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Abstract 

 

Bayesian state-space models were used to assess the swordfish (Xiphias gladius) caught in the 

Indian Ocean assuming that there is a single stock. Estimations of catches as reported in the IOTC 

database were used and the models were fitted to standardized catch-per-unit-effort (CPUE) 

available for the stock assessment. Catches and standardized CPUEs were conflictive in some 

periods. There are periods in which the CPUE increased but the catches increased as well. Different 

runs were conducted with several combinations of CPUE. Uncertain is high as indicated by the 

wide posteriors of parameters. Data do not convey much information about parameters r and k. 

Estimations indicate that swordfish is probably not overfished, but it is subject to overfishing. 

However the results might be carefully considered given the conflict between catch and CPUE time 

series which drives the results of such simple models. 

 

1. Introduction 

 

Swordfish (Xiphias gladius) (SWO) been caught in Indian Ocean mainly by fleets which operate 

with longline. Actually SWO is the target of longline fleets of some countries (e.g. Portugal and 

Spain). Accumulated catches of Indonesia, Taiwan and Sri Lanka were the largest one, but in recent 

years the proportion of catches of other countries increased. Status of swordfish in Indian Ocean (all 

areas aggregated) was always “not overfished” and not “subject to overfishing” since the first stock 

assessment. There are detailed data concerning SWO stock hence in 2015 an complex Stock 

Synthesis (SS3) model was used for status stock advice. However, comparisons of results gathered 

with different models (simple and complex) allow for better understanding of the stock status taking 

into account different assumptions and structures of models. In this sense the working group 

requested to run a simple production model which demands only catch and relative abundance 

indices (or effort). Estimations of standardized CPUE of Indonesia, Japan, Portugal, South Africa, 

Spain and Taiwan were available. All available CPUEs and the official catch time series reported in 

the IOTC database were considered in this working paper to assess swordfish stock of Indian Ocean 

using a state-space Bayesian production model (SBPM). 

 

2. Data 

 

Catches increased slowly from 1950 to 1991, but jumped to more than 30,000 t in mid 1990’s 

(Figure 1 A). There were oscillations of catches in the last decades, with a peak in 2004 (40,257.9 t) 

followed by a plunge. In the very end of the time series catches increased fast and the estimation for 

2015 was close to 40,000 t. Estimations of standardized CPUE are in Figure 1 B. The CPUE time 

series of Japan considered to run the production model are the ones of the northwest area. The series 

were split into two shorter series, and the values after 2010 were discarded following the 

recommendation of Ijima (2017). All the other CPUE series were considered as they appear in the 

working papers of the authors that provided them (Coelho et al., 2017; Fernández-Costa et al., 

2017; Ijima, 2017; Setyadji et al, 2017; Wang 2017). The exception was the South African CPUE 

series which was provided by the secretariat of the IOTC. Time series of CPUE of Portugal and 

South Africa were rescaled by diving it to 1000 because they were estimated in quilos and the 
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values were much higher than the ones of the other CPUE series. To deal with CPUE values of 

similar scale is convenient because it allow to use the same prior for the coefficient of catchability 

(see below). 

 

 

 
Figure 1 – Catches (A) and catch-per-unit-effort (CPUE) (B) of swordfish of the Indian Ocean. 

TWN.LL – standardized CPUE of longline fleet of Taiwan; JPN.LL1 – first part of the standardized 

CPUE of longline fleet of Japan; JPN.LL2 – second part of the standardized CPUE of longline fleet 

of Japan; IDN.LL – standardized CPUE of longline fleet of Indonesia; PRT.LL – standardized 

CPUE of longline fleet of Portugal; SPN.LL – standardized CPUE of longline fleet of Spain; 

ZAF.LL – standardized CPUE of longline fleet of South Africa. Values of CPUE were scaled by 

dividing them by the mean. 

 

Standardized CPUE JPN.LL1 (1976-1993) oscillated from the end of 1970’s to the beginning of 

1990’s, but in general, there was an increasing trend. JPN.LL1 CPUEs in the end (1992-1993) were 

higher than in the beginning of the time series (1976). Second part of Japanese series (JPN.LL2) 

spans from 1994 to 2010. JPN.LL2 CPUEs decreased from 1994 to 2006, but increased slightly in 

the end of the time series. CPUEs of Taiwan (TWN.LL) increased in the beginning of the time 

series throughout 2004, but it decreased fast in the following two years. Overall the TWN.LL CPUE 

was flat in the end of time series from 2006 to 2015. CPUEs of Spain (SPN.LL) spans from 2001 to 

2015. Time series of Spain is mostly flat. Time series of Indonesian fleet (IDN.LL) largely 

oscillated with peaks and plunges, but there was not a clear increasing (or decreasing) time trend. 

CPUEs of Portugal (PRT.LL) (2000-2015) and of South Africa (ZAF.LL) (2004-2015) decreased 

all over the years. 

 

3. Model 

 

The model used here is fully described in the paper of Meyer and Millar (1999). The model was 

already used before in the some the previous IOTC meetings. Applications in stock assessment of 

species caught in longline fisheries targeting tuna and tuna like species in Indian Ocean can be 

found in Andrade (2013 and 2014). Here follows a summary of the model version used in this 

paper, and also the description of the calculation procedures. The observed data are represented by 

vectors with values for yields and abundance indices denoted by 𝑌𝑡and 𝐼𝑡, respectively, where 𝑡 =
1, … , 𝑁 is the index for the year. The general biomass dynamic equation is: 

 

𝐵𝑡 = 𝐵𝑡−1 + 𝑔(𝐵𝑡−1) − 𝑌𝑡−1 (1) 
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− 

where 𝐵𝑡 is the biomass at the beginning of year 𝑡, 𝑌𝑡 is the yield obtained during this year (all 

fleets aggregated), and 𝑔( )is the “surplus production” function. The formulae of Schaefer 

𝑔(𝐵𝑡−1) = 𝑟𝐵𝑡−1(1 − 𝐵𝑡−1 𝑘⁄ ) or Fox type 𝑔(𝐵𝑡−1) = 𝑟𝐵𝑡−1(− log⁡(𝐵𝑡−1 𝑘⁄ )) are often used here, 

where 𝑘 is the carrying capacity and 𝑟 is the intrinsic growth rate of the population. Both 

formulations Schaefer type (SCH) and Fox (FOX) where used in this analyses. 

 

It is assumed the link between the unobserved state (𝐵𝑡) and the observed abundance indices in the 

𝑡𝑡ℎ year (𝐼𝑡𝑚) can be represented by the equation: 

 

𝐼𝑡𝑚 = 𝑞𝑚𝐵𝑡 (2) 

 

where 𝑞𝑚 is the catchability coefficient of the 𝑚𝑡ℎ fleet. Management reference points may be 

calculated based on the estimations of the parameters 𝑟, 𝑘 and eventually 𝑞𝑚. 

 

These calculations can be considered in the context of a state-space model which includes process 

and observational uncertainties. In this case, the observed series of data (𝐼𝑡) is linked to the 

unobserved states (𝐵𝑡) through a stochastic model. This version of the model is reparametrized by 

the calculation of the proportion of the annual biomass in relation to the carrying capacity (𝑃𝑡 =
𝐵𝑡 𝑘⁄ ), which results in an improvement in the performance of the Gibbs sampler (MCMC) used in 

the Bayesian approach to generate the sample of the posterior distribution. The state equations may 

thus be written in the stochastic form, as: 

 

𝑃1⁡|𝜎
2 = 𝑒𝑢1 (3) 

𝑃𝑡|𝑃𝑡−1, 𝑘, 𝑟, 𝜎
2 = [𝑃𝑡−1 + 𝑔(𝑃𝑡−1) − 𝑌𝑡−1 𝑘⁄ ]𝑒𝑢𝑡𝑡 = 2, … , 𝑁 

 

while the equations for the observations would be: 

 

𝐼𝑡𝑚|𝑃𝑡, 𝑞𝑚, 𝜏
2 = 𝑞𝑚𝑘𝑃𝑡𝑒

𝑣𝑡𝑡 = 2,… ,𝑁 (4) 

 

Where 𝑢𝑡is an independent and identically distributed (iid) normal random variable with mean 0 

and variance 𝜎2, while 𝑣𝑡 is a normal iid with mean 0 and variance 𝜏2. Lognormal models were 

thus used for both observational and process equations. 

 

If independent priors are assumed for the three parameters (𝑘, 𝑟, 𝑞) of the biomass dynamic model 

and those that describe the errors (𝜎2,𝜏2), the prior distribution of these parameters and of the states 

(𝑃1, … , 𝑃𝑁) is: 

 

𝑝(𝑘, 𝑟, 𝑞1, … , 𝑞𝑚 , 𝜎
2, 𝜏2 , 𝑃1, … , 𝑃𝑛) =

𝑝(𝑘)𝑝(𝑟)𝑝(𝑞1) … 𝑝(𝑞𝑚)𝑝(𝜎
2)𝑝(𝜏2)𝑝(𝑃1|𝜎

2)∏ 𝑝(𝑃𝑡|𝑃𝑡−1, 𝑘, 𝑟, 𝜎
2)𝑁

𝑖=2  (5) 

 

The joint sample distribution for the abundance indices is given by: 

 

𝑝(𝐼1, … , 𝐼𝑁|𝑘, 𝑟, 𝑞, 𝜎
2, 𝜏2, 𝑃1, … , 𝑃𝑁) = ∏ 𝑝(𝐼𝑡|𝑃𝑡 , 𝑞, 𝜏

2)𝑁
𝑡=1  (6) 

 

and finally, the posterior distribution for the parameters, states, and observations is: 

 

𝑝(𝑘, 𝑟, 𝑞, 𝜎2, 𝜏2 , 𝑃1, … , 𝑃𝑁 , 𝐼1, … , 𝐼𝑁) =

⁡⁡⁡⁡⁡⁡⁡𝑝(𝑘)𝑝(𝑟)𝑝(𝑞)𝑝(𝜎2)𝑝(𝜏2)𝑝(𝑃1|𝜎
2)∏ 𝑝(𝑃𝑡|𝑃𝑡−1, 𝑘, 𝑟, 𝜎

2)𝑁
𝑡=2 ∏ 𝑝(𝐼𝑡|𝑃𝑡 , 𝑞, 𝜏

2)𝑁
𝑡=1  (7) 

 

Numerical Monte Carlo procedures can be used to obtain a sample of the joint posterior 

distribution. In the present study, a Markov Chain Monte Carlo (MCMC) algorithm was used, and 



IOTC-2017-WPB15-24 

the Gibbs sampler was implemented in the JAGS program (Plummer, 2005) available in the R 

program (R Core Team, 2017) with the runjags package (Denwood, 2009). Three chains were 

initiated with different initial values for the parameters. The first 30,000 values of each chain were 

eliminated as burnin, and values were retrieved at every 30 steps (slice sampling) of the subsequent 

30000 steps of the chain, providing a set of 1000 values of the posterior distribution for each chain. 

 

4. Priors 

 

Informative or non-informative priors can be used here, depending on the availability of 

information and knowledge on the species and the stock being analyzed, or even similar species or 

stocks (McAllister and Kirkwood,1998, McAllister et al.,1994, Punt and Hilborn, 1997). Both non-

informative and informative prior models were fitted in order to assess the effect of the prior 

assumptions. Jeffrey’s non-informative reference prior for 𝑞 is independent of 𝑟 and 𝑘, and is 

equivalent to a uniform prior on a logarithmic scale (Millar, 2002). Therefore, the wide uniform 

prior 𝑈(−45,−1) on the logarithmic scale was used in the present study for the catchabilities of all 

fleets 𝑞1, … , 𝑞𝑚 . For 𝑟 and 𝑘, wide uniform priors that convey little information on the parameters 

were used. The uniform prior for 𝑘 with lower and upper limits defined in tons was 𝑈(42000,20 ×
42000). The lower limit is close to the maximum annual yield as reported in IOTC database. The 

prior for 𝑟 was 𝑈(0,1), and those for 𝜎2and 𝜏𝑚
2  were the inverse gamma 𝐼𝐺(0.3,0.03)and 

𝐼𝐺(0.3,0.03), respectively. The parameters of priors for the observational and process errors were 

selected after some exploratory analysis. The above set of priors is hereafter denominated “non-

informative” (NI). In the informative set (INF), priors for most of the parameters are to the non-

informative ones mentioned above, but the uniform prior of 𝑟 is replaced by a lognormal 

distribution with mean 0.4 and standard deviation of 0.4 in the logarithm scale. This informative 

prior of 𝑟 is similar to the one used in the last stock assessment of swordfish held in 2014 (Andrade, 

2014). In addition it is also similar to that in the last stock assessment of Atlantic swordfish (Anon., 

2017). 

 

5. Diagnostics and Convergence 

 

Graphs (e.g. traceplots) and diagnostic tests were used to determine whether a stationary 

distribution had been reached. These analyses were run in the CODA library (Plummer et al., 2006). 

Gelman and Rubin’s (1992) statistic was used for diagnosis. Convergence was assumed when the 

97.5% quantile of the Potential Scale Reduction Factor (PSRF) was equal to or lower than 1.01. 

Autocorrelations were also used to evaluate the mixing degree of the samples of the posterior 

distribution. Estimations of some parameters are usually correlated, hence coefficients of 

correlations were calculated and the joint posterior were examined. Residuals were also investigated 

to assess the quality of the fittings to each time series. Deviance Information Criteria (DIC) 

(Spiegelhalter et al., 2002) of different models was also assessed. 

 

6. Results 

 

Data and Model Selection 

 

Distributions of frequencies, relationships and coefficients of correlations of available estimations 

of CPUE time series available for the stock assessment are showed in Figure 2. Nine out of the 

sixteen correlations calculated were positive, which indicate agreement among the time series. 

Among the negative correlations notice the ones calculated between Indonesia and Portugal time 

series, and between Indonesia and South Africa time series. 
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Figure 2 – Estimations of catch-per-unit-effort (CPUE). TWN.LL – standardized CPUE of longline 

fleet of Taiwan; JPN.LL1 – first part of the standardized CPUE of longline fleet of Japan; JPN.LL2 

– second part of the standardized CPUE of longline fleet of Japan; IDN.LL – standardized CPUE of 

longline fleet of Indonesia; PRT.LL – standardized CPUE of longline fleet of Portugal; SPN.LL – 

standardized CPUE of longline fleet of Spain; ZAF.LL – standardized CPUE of longline fleet of 

South Africa. 

 

An exploratory analysis taking into account different combinations of the CPUE series was 

conducted using the Bayesian production model mentioned above (section 3) and the JABBA (see 

INFO paper). In this working paper are showed the results calculated taking into account all the 

available CPUE time series. Four models were fitted to the CPUEs selected for the analyses, 

Schaefer type (SCH) with non-informative priors (NI) and with informative prior (INF), and Fox 

type (FOX) with non-informative priors and with informative prior. All the calculations of 97.5% 

quantile of PSRF (Gelman and Rubin, 1992) were lower than 1.01, which indicates that 

convergence is not of much concern. In addition the autocorrelation analyzes indicate a fairly 

acceptable mixing degree of the samples of the posterior distribution. Calculations of DIC were -

101.54, -99.46, -102.06 and -98.31 for the SCH-NI, SCH-INF, FOX-NI and FOX-INF models 

respectively. The expectations of the standardized residuals were 0.0124 (SCH-NI), 0.0126 (SCH-

INF), 0.0126 (FOX-NI) and 0.0125 (FOX-INF). The working group decided to use the informative 

prior which reflect biological information. If the informative prior is used the Schaefer model 

performs slightly better if we rely on DIC, hence hereafter only results of calculations of the run 

SCH-INF are showed. A summary of the fittings of the other three models (SCH-NI, FOX-NI and 

FOX-INF) are in Appendix I. 

 

Fittings 

 

Fittings of the Schaefer model with informative prior to the IOTC catch time series and to the seven 

longline CPUE series are in Figure 3. State-space models are very flexible because there are many 

parameters (i.e. 𝑟, 𝑘, 𝑞1, … , 𝑞𝑚, 𝑝1, … , 𝑝𝑁, 𝜏
2, 𝜎2). Usually the longer time series with clear 

increasing (or decreasing) trends are more influence. Hence, in spite of the flexibility of the model, 

if some of the CPUE datasets are conflictive, the fittings are not good for the less influential or 

shorter time series. The model fittings were particularly poor for the Spanish CPUE series which is 
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flat and is not influential. Fittings were also poor for the beginning of the second part of the 

Japanese time series which showed a sharp decreasing trend, for the values of 2003-2005 years of 

Taiwan which were high and is the start of a sharp decreasing trend. Overall model fittings showed 

a decreasing trend from 1976 to the beginning of 1980’s, followed by an increasing trend until mid 

1990’s, and finally a slightly decreasing trend from 1994 to 2015. 

 
Figure 3 - Fittings of Schaefer type model with informative prior to the seven CPUE time series 

available for stock assessment: TWN – standardized CPUE of longline fleet of Taiwan; JPN1 – first 

part of the standardized CPUE of longline fleet of Japan; JPN2 – second part of the standardized 

CPUE of longline fleet of Japan; IDN – standardized CPUE of longline fleet of Indonesia; PRT – 

standardized CPUE of longline fleet of Portugal; SPN – standardized CPUE of longline fleet of 

Spain; ZAF – standardized CPUE of longline fleet of South Africa. 
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Residuals are shown in Figure 4. Overall there were no biases in the fittings for IDN, JPN1, PRT, 

and ZAF CPUE time series. However, the model underestimated the values of the beginning of the 

time series JPN2 and underestimated them in mid 2000’s. The fittings to the time series of Spain 

were largely biased all over the years, while the models underestimated the values of the TWN 

series in the beginning of 2000’s. In summary, the flat Spanish time series is not influential at all, 

hence the fittings are largely biased. In addition the sharp decreasing trends of CPUEs in the 

beginning of JPN2 series, and of TWN series in the beginning of 2000s can not be fit by a simple 

production model which does not account for detailed information concerning age, length, 

selectivity and sex structure of catches.  
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Figure 4 – Standardized residuals of the model fittings to the seven CPUE time series available for 

stock assessment: TWN – standardized CPUE of longline fleet of Taiwan; JPN1 – first part of the 

standardized CPUE of longline fleet of Japan; JPN2 – second part of the standardized CPUE of 

longline fleet of Japan; IDN – standardized CPUE of longline fleet of Indonesia; PRT – 

standardized CPUE of longline fleet of Portugal; SPN – standardized CPUE of longline fleet of 

Spain; ZAF – standardized CPUE of longline fleet of South Africa.. 

 

Overall residuals (all CPUE time series) are shown in Figure 5. In general the model fits well the 

data in the sense the there is not a time trend in the residuals. 

 

 

 
Figure 5 – Standardized residuals of the model fitting. 
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Posteriors of parameters and of YMSY 

 

Priors and posteriors of r and k parameters are showed in Figure 6.The prior of r strongly influences 

the results. Notice that the posterior of r calculated with the informative prior give more weight to 

higher values than the posterior calculated with the non-informative prior. Precision of the posterior 

of r with informative prior is similar to that of the non-informative prior. Data are not informative 

about k and the posteriors were bounded by the upper limit of the uniform prior which was 

approximately 20 x max(catch). Some additional runs were conducted with higher values for the 

upper limit of the prior (e.g. 40 x max(catch)). However the right tail of the posteriors of k are 

heavy and were still bounded by the upper limit. 

 
Figure 6 – Priors (thin lines) and posteriors (thick) lines of the parameters calculated with the 

informative and non informative priors for r. The thick solid lines stand for the posterior calculated 

with the non-informative prior, while the thick dashed lines stand for the posterior calculated with 

the informative prior. 

 

Densities distributions of Ymsy as calculated based on the posteriors of r and k is showed in Figure 

7. The shape of densities distributions of Ymsy as calculated using non-informative and informative 

priors were similar, but the scales were very different. The posterior calculated based on the 

informative prior shifted to the right and gave more weights to values between 20,000 t and 55,000 t 

with mode approximately equal to 30,000 t. However, the posterior calculated with the non-

informative prior gave more weight to values between 5,000 t and 45,000 t with mode close to 

20,000 t. 

 
Figure 7 – Densities distributions of YMSY. Solid lines stand for results calculated using non-

informative prior of r, while the dashed lines stand for the calculations using informative prior. 

 

Joint posteriors and correlations 
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Contour plots, marginal distributions and correlations of posteriors of parameters and of 𝑌𝑀𝑆𝑌 as 

calculated using Schaefer type model and informative prior are in Figure 8. Correlation between r 

and k was negative, which is a typical result when fitting such kind of production model. 

Correlations among qs were high and positive which is probably due to the similar scales of the 

available standardized CPUE series. Overall the correlations found among r, k, q, and YMSY, were 

moderate or high, while correlations with and among 𝜏2 and 𝜎2 were low. 

 
Figure 8 – Marginal and joint posterior distributions of parameters and of yield at MSY as 

calculated using informative prior and Schaefer type production model. 

 

Time trends of ratios between harvests in each year and harvest at MSY (𝐻/𝐻𝑀𝑆𝑌), and between 

biomass in each year and biomass at MSY (𝐵/𝐵𝑀𝑆𝑌) are showed in Figure 9. Notice that credibility 

intervals of 𝐵/𝐵𝑀𝑆𝑌 were wide all over the years, while the credibility interval of 𝐻/𝐻𝑀𝑆𝑌 was low 

in the beginning of the time series, but it was wide after mid 1990’s. The ratio 𝐵/𝐵𝑀𝑆𝑌 decreased in 

the end of 1970’s but increased from 1980 to 1994. After 1994 the median of the ratio 𝐵/𝐵𝑀𝑆𝑌 

decreased in a regular pace until 2015 when it was close to 1.1. The ratio 𝐻/𝐻𝑀𝑆𝑌 increased slowly 

until 1992, but fast from the beginning of 1990’s until mid 2000’s. The harvest ratio decreased from 

2005 to 2011, but it increased in the end of the time series. In 2015 the median of 𝐻/𝐻𝑀𝑆𝑌 was 

slightly higher than 1. The concurrent increasing trend of catches, of 𝐻/𝐻𝑀𝑆𝑌 and of 𝐵/𝐵𝑀𝑆𝑌 is not 

a common result as the 𝐵/𝐵𝑀𝑆𝑌 is expected to decrease as the catch increases. This uncommon 

pattern was due to the increasing trends of the CPUEs of Taiwan and of the first part of the Japan 

time series, along with the increasing trend of catches.  
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Figure 9 – Ratios between biomass in each year and harvest at MSY (𝐵/𝐵𝑀𝑆𝑌) (bluish colors) and 

between harvest and harvest at MSY (𝐻/𝐻𝑀𝑆𝑌) (reddish colors), as calculated using Fox type 

model and informative prior for r. Shaded polygons and dotted lines stand for the credibility 

intervals (95%), while thick solid lines stand for the medians. 

 

Kobe plot calculated using Fox model and informative prior is showed in Figure 10. Joint posterior 

sample of 𝐵/𝐵𝑀𝑆𝑌 and 𝐻/𝐻𝑀𝑆𝑌 for 2015 were spread out mostly over green (not overfished and not 

subject to overfishing) and orange zones (not overfished but subject to overfishing). The mode of 

the joint posterior is close to the threshold between green and orange zones.  

 
Figure 10 – Contour plots of posteriors of 𝐻/𝐻𝑀𝑆𝑌 and 𝐵/𝐵𝑀𝑆𝑌 as calculated using Fox type model 

and informative prior. Solid line and filled circles stand for the trajectories of marginal medians. 

 

A summary of the estimations of quantities of interest for management is in Table 1. The catch of 

the last year of the time series (2015) was higher than MSY, while the median of F/FMSY ratio was 

higher than 1, which indicate that in the recent years the fishery is driving to stock to a “subject to 

overfishing” scenario. However the biomass in 2015 was probably still higher than the biomass at 

MSY. 
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Table 1 – Summary of quantities of interest for management. 

Management.Quantity Aggregate.Indian.Ocean 

2015 catch estimate 39668.83 

Mean catch from 2011-2015 31469.22 

MSY (80% CI) 34460.21(23473.95;53309.8) 

Data period used in assessment 1950--2015 

FMSY 0.12(0.08;0.18) 

BMSY 302955.6(204604.58;394014.22) 

Fcurrent/FMSY (80% CI) 1.01(0.61;1.64) 

Bcurrent/BMSY (80% CI) 1.14(0.96;1.32) 

Bcurrent/B0 (80% CI) 0.59(0.48;0.7) 

BMSY/B0 (80% CI) 0.52(0.50;0.54) 
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