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model - implication of considering bias in catch data 

 

 

Summary 

 

 

Bigeye tuna (BET), Thunnus obesus distributes in the tropical and subtropical waters 

of Indian Ocean. Because of a variety of fishing gears and fishing fleet structures, 

there remain statistical biases in the historical nominal catches of the Indian Ocean 

BET. However, the impact of this bias on stock assessment has been neglected in 

recent years’ assessments. This paper investigated the impacts of observation error and 

statistical bias of catch on the stock assessment of Indian Ocean BET, using Age 

Structured Assessment Program (ASAP) based on fishery-specific catch, catch-at-age, 

and standardized catch-per-unit-effort data. The results showed that the current stock 

of BET was not overfished and overfishing was not likely occurring at the beginning 

of 2015 (base case model). However, the results of base model and sensitivity analysis 

models showed that both the observation error and the statistical bias associated with 

catch data can have impacts on assessment results, with the latter being more 

influential. Thus, this study highlights the importance of considering both the 

assumptions of observation error and statistical bias in catch data for tuna fishery stock 

assessment, with the latter often being neglected.  
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1 Introduction 

Bigeye tuna (BET), Thunnus obesus is an important commercial species distributed in tropical 

and subtropical waters of Indian Ocean. Its stock status has been the focus of regional tuna 

fisheries management organizations. Recently, stock assessments of Indian Ocean BET have 

been conducted using ASPIC (A Stock-Production Model Incorporating Covariates) 

(Matsumoto, 2016), SS (Stock Synthesis) (Langley et al, 2013a), ASPM (Age structured 

production model) (Nishida & Iwasaki, 2013), and ASAP (Age Structured Assessment 

Program) (Zhu, 2016). Because of a variety of fishing gears and fishing fleet structures, there 

remain some statistical biases in the historical nominal catches (under-reported or 

over-reported) of the Indian Ocean BET, and they are often neglected in recent stock 

assessments. The objective of this paper is to investigate the impacts of observation error and 

statistical bias of catch on the stock assessment of Indian Ocean BET, using Age Structured 

Assessment Program (ASAP) based on fishery-specific catch, catch-at-age, and standardized 

catch-per-unit-effort data. 

2 Material and Methods 

2.1 Fisheries data 

In this paper, Indian Ocean BET are assumed to be subject to 7 fisheries, i.e., Deep longline 

fishery (LL), Purse seine fishery of free-school (PSFS), Purse seine fishery of 

associated-school (PSLS), Pole-and-line and small seine fisheries (BB), Fresh longline fishery 

(FL), Line fishery (LINE), and Other fishery (OTHER), according to the available datasets 

provided by the IOTC Secretariat for 18
th

 WPTT. The data sets included in the stock 

assessment were fishery-specific catch, standardized longline CPUEs, and catch-at-age data 

for 1979-2015. The standardized longline CPUE using joint fishery data from the main 

longline fleets were used as abundance indices for fitting the model. Two abundance index 

series were available, i.e., the index series for northwest (R1) and northeast (R2) waters in the 

Indian Ocean (Figure 1). 

2.2 Biological parameters and assumptions 

Genetic studies have suggested that there is only one population of bigeye tuna in the Indian 

Ocean (Appleyard et al., 2002; Chiang et al., 2008). Thus, a single stock was assumed in this 

study. We used classical Von Bertalanffy growth function to model BET growth (Laslett et al, 

2008). The weight-fork length (W-L) relationship is . Beverton-Holt 

stock-recruitment relationship (S-R) was assumed and the steepness (h) parameter was 

assumed to be 0.8 for the purpose of this investigation. 

2.3 Model and parameter estimates 

In this paper, we used ASAP (a program for statistical age-structured catch-at-age analysis) 

(NOAA Fisheries Toolbox, 2014) as assessment model. The ASAP model is a formal stock 

assessment model and has been used for assessing many commercially exploited stocks, e.g., 
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red grouper, yellowtail flounder, Pacific sardine, Greenland halibut, Gulf of Maine cod, 

Florida lobster (see NOAA Fisheries Toolbox at http://nft.nefsc.noaa.gov).  

ASAP is an age-structured model that uses forward computations assuming separability of 

fishing mortality into year and age components to estimate population sizes, given observed 

catches, catch-at-age, and indices of abundance data. The objective function in parameter 

estimate is the sum of a number of model fits and two penalties. The model parameters are 

estimated by using maximum likelihood. There are two types of error distributions in the 

calculation of likelihood function: multinomial and lognormal. The multinomial distribution is 

assumed for catch-at-age data, with effective sample size (ESS) iteratively adjusted based on 

initial model runs. The lognormal error distribution is assumed for annual catch (in weight), 

abundance indices and stock-recruitment relationship (recruitment deviation). And the main 

impact factor of lognormal likelihood function is the standard deviation of the 

log-transformed error distribution. In the ASAP model, the coefficient of variation (CV) 

instead of standard deviation needs to be assumed and adjusted. The multinomial likelihood 

function is calculated as 

  

where  denotes log likelihood,  denotes the -year-old catch,  denotes the 

observed proportion of -year-old catch, and  denotes the predicted proportion of 

-year-old catch. The lognormal likelihood function is calculated as 

 

where  and  denote the observations and model estimations of the -th data,  

denotes the standard deviation. The objective function of bigeye tuna ASAP model is 

calculated as 

                                   （3） 

Whereλj denotes the j-th weight coefficient of likelihood function. The parameters that need 

to be estimated in the ASAP model include recruitment in each year from 1979 through 2015 

(CV=0.6 for log-tranformed recruitment deviations), catchability coefficients (q, constant over 

time) for the abundance indices, selectivity curves for the 7 fisheries, effective sample size 

(ESS) for catch-at-age for each fishery, initial population size, and fully recruited fishing 

mortality (Fmult) for each fishery for the first year and deviations for Fmult for the remaining 

years. The parameters assumed to be known included the length-at-age, weight-at-age, 

age-specific maturity, age-specific natural mortality rates, deviation for indices of abundance, 

and steepness of the stock-recruitment relationship.  

http://nft.nefsc.noaa.gov/
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2.4 Uncertainty quantification of catch and scenario design 

In this study we investigated the impacts of CVs and statistical (reporting) bias of annual catch 

data on the results of stock assessments. The CV for annual catch data in the initial model run 

was assumed to be 0.1 (base case) for each of seven fisheries and constant for the whole time 

period. Adjustment was made according to the diagnostic results for the residual pattern and 

root mean square error (RMSE). The statistical bias in the annual catch could be 

under-reported or over-reported, based on the catch reporting analysis conducted by the IOTC 

secretariat. Thus, to address the potential impact derived from this error, we adjusted the catch 

data by increasing or decreasing by a percentage of the original catch. In total, we designed 13 

models including 1 base case and 12 sensitivity analysis models (Table 1).  

3 Results and discussion 

3.1 Impact of catch error on model fit 

In the 13 models, 9 models were converged. Convergence was the first signal to perceive if 

the model might be mis-specified. For the following analysis, we only considered converged 

models. Model fit diagnostics was done by looking at the residual patterns of abundance index, 

catch, and effective sample size. The base case model showed that the model fit the longline 

CPUE indices well, except for the early years (1979-1982) (Figure 2). The residuals between 

observed and estimated longline CPUE indices are shown in Figure 3 and 4. The index of 

Northwest fit better than the index of Northeast (Figure 2). This is possibly because the 

northwest Indian Ocean is the main longling fishing area for BET. The observed and 

predicted catch for the base case was shown in Figure 5. The model fit summaries are shown 

in Table 2. Overall, it seemed that the differences in catch error did not significantly impact 

the fit quality of abundance indices.  

3.2 Impact of catch error on estimates of F and SSB 

The estimated fishing mortality for each model was shown in Figure 6. By comparing the 

fishing mortality between the 8 sensitivity analysis models and the base case model, it is 

found that the fishing mortalities of all models were in the same trend. The fishing mortality 

increased gradually from 1979 to early 1990s, followed by a steep increase during the mid- 

and late-1990s. The fishing mortality since 2000 stayed at a relative high level, with slight 

annual variations. In the cases of CV = 0.05 and CV = 0.15, the estimated values of fishing 

mortality were very close to the values of base case model, and the trend was basically the 

same. However, the fishing mortality of Model 8 since 1983 was much lower than that of 

other models. This needs to be further investigated. Overall, the catch observation error and 

reporting bias seemed not to be impacting the fishing mortality estimates significantly, except 

for Model 8.  

The estimated spawning stock biomass (SSB) for each model was shown in Figure 7. The 

SSBs of all models have the same trend. In contrast to the fishing mortality trend, the SSB has 

been declining since 1980s, although there was a short-term increase from 1979 to the 

mid-1980s. Except for Model 9, the SSB in 2015 was lower than the level of MSY. In the cases 

of CV = 0.05 and CV = 0.15, there was no obvious difference in the SSB between the 

sensitivity analysis models and the base case model. The SSB was the lowest when the 
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reporting bias in catch is reduced by 15% (Model 9). Overall, the estimates of SSB were more 

impacted by the reporting bias than the observation error in the catch data.  

3.2 Impact of catch error on BRPs and stock status determination 

The biological reference points and related quantities from each assessment model were 

shown in Table 3. From the base case model (Model 2), /  was estimated to be 1.0, 

 was estimated to be 1.02, and  was estimated to be 1.18. Thus it is 

indicated that the current stock of BET in the Indian Ocean was not overfished and 

overfishing was not likely occurring at the beginning of 2015.  

For the observation error of catch, by comparing the Models 1-3, it was found that the change 

of CV in the observation error of catch had obvious impacts on the MSY and the associated 

reference points. When the CV increased or decreased, the reference point MSY, ,  

reduced and the  and  increased. The estimate of  increased with 

the increase of CV. A comparison of  and  (Model 1-3) showed 

that when CV increases or decreases, the current resource status was determined to be 

overfishing. 

For the statistical bias of catch, higher increases in catch resulted in greater MSY estimates. 

When the statistical bias was assumed to be 15%, the assessment results are basically 

consistent with the base case model. The values of  indicated that the stock tended 

to be overfishing if the level of statistical bias was assumed to be 20% (Table 3). While under 

the other assumptions (10%, 15%, -15%), the results of the stock assessment did not change 

significantly, compared with the base case model. To further investigate the impacts of 

statistical bias, we also adjusted the catch by 16%, 17%, 18%, 19% and found that the stock 

was also not overfishing for each of these adjustment levels. Therefore, the statistical bias of 

less than 20% will not impact the determination of stock status in terms of overfishing.  

However, when considering stock status using Kobe plots (Figure 10), it can be seen that both 

observation error and statistical bias of catch have obvious impacts on the overall 

determination of stock status in terms of overfishing and/or overfished. Thus, this study 

highlights the importance of considering both the assumptions of observation error and 

statistical bias in catch data for tuna fishery stock assessment, with the latter often being 

neglected.  

4 Future works 

The purpose of this study is only to show the potential impacts of catch error on stock 

assessment. However, the ground truth of the underlying population dynamics is unknown. In 

the future analysis, we will use simulation approach to explore the impact of catch error on 

stock assessment of BET. The operating model can be developed using POPSIM or other 



IOTC–2017–WPTT19–40 

- 7 - 
 

related models, and conditioned on the recent stock assessment. The goal is to understand 

when and how the mis-specifications of uncertainties in catch data can impact the stock 

assessment for stocks like bigeye tuna, and to develop management advice robust to this 

source of uncertainty.  
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Table 1．Base case model and sensitivity models for bigeye tuna 

 Model   CV Time perid of 

catch 

Adjust level for 

catch 

Yes for 

converged 

Model 1 0.05 1979-2015 -- Yes 

Model 2 

(Base case) 
0.1 1979-2015 -- Yes 

Model 3 0.15 1979-2015 -- Yes 

Model 4 0.1 1979-2015 10% Yes 

Model 5 0.1 1979-2015 15% Yes 

Model 6 0.1 1979-2015 20% Yes 

Model 7 0.1 1979-2015 -15% Yes 

Model 8 0.1 

1979-1983 -10% 

Yes 
1984-1995 15% 

1996-2012 20% 

2013-2015 -10% 

Model 9 0.1 

1979-1983 10% 

Yes 
1984-1995 15% 

1996-2012 20% 

2013-2015 -10% 

Model 10 0.2 1979-2015 -- No 

Model 11 0.25 1979-2015 -- No 

Model 12 0.1 1979-2015 -10% No 

Model 13 0.1 1979-2015 -20% No 
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Table 2．Model fit summary 

Lambda 

Objective 

function 
Catch Index 

Age 

comps 

Recruit 

devs 
Penalty 

-- 7 2 -- 1 1000 

CV 

Model 1 5765.3 1703.7 54.1 3552.9 454.6 0 

Model 2 5725.7 1887.7 31.5 3352.7 453.8 0 

Model 3 6024.9 1995.8 37.3 3537.2 454.7 0 

Catch 

Model 4 5961.2 1912.6 44.6 3545.4 458.6 0 

Model 5 5972.8 1924.1 44.7 3543.9 460.2 0 

Model 6 5774.3 1937.9 38.2 3338.2 460.1 0 

Model 7 5883.4 1845.9 44.8 3543.7 448.9 0 

Model 8 6731.7 1920.2 59.4 4300.4 451.7 0 

Model 9 5979.4 1923.5 46.7 3547.8 461.4 0 

 

 

Table 3．Biological reference points and related quantities from each assessment model 

Model MSY(t) 
Ccurr/ 

MSY 
FMSY 

Fcurr/ 

FMSY 
SSBMSY(t) 

SSBcurr/ 

SSBMSY 
SSB0(t) 

SSBcurr/ 

SSB0 

Model 

1 88506 1.05 0.145 1.08 621982 1.16 1967740 0.37 

Model 

2 91208 1.02 0.146 1.00 629187 1.18 1974170 0.38 

Model 

3 89439 1.04 0.145 1.04 628136 1.20 1983010 0.38 

Model 

4 98871 0.94 0.145 1.04 695959 1.20 2200580 0.38 

Model 

5 103442 0.90 0.145 1.04 727117 1.20 2298140 0.38 

Model 

6 106374 0.87 0.146 1.06 735084 1.18 2311650 0.38 

Model 

7 76441 1.21 0.145 1.04 537153 1.19 1697510 0.38 

Model 

8 126710 0.73 0.178 0.56 633599 1.23 1902070 0.41 

Model 

9 105637 0.88 0.144 0.75 744251 1.24 2355170 0.39 
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Figure 1．Standardized CPUEs of Indian Ocean bigeye tuna (1979-2015) 

 

 

  

Figure 2．Observed and predicted abundance indices of Indian Ocean bigeye tuna (base 

case model) 
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Figure 3．Residuals between observed and estimated abundance indices of Indian Ocean 

bigeye tuna (northwest index) 

 

 

 

 

Figure 4．Residual between observed and estimated abundance index of Indian Ocean 

bigeye tuna (Northeast index) 
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Figure 5．Observed and predicted annual catch of bigeye tuna in the Indian Ocean (base 

case model 
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Figure 6．Estimated fishing mortality of bigeye tuna in the Indian Ocean 

 

 

 

 

Figure 7．Estimated spawning stock biomass (SSB) of bigeye tuna in the Indian Ocean 
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Figure 8．Kobe plots for the BET assessment in the Indian Ocean 

 

 


