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Abstract 

An abundance index for skipjack and juvenile yellowfin tuna from 1970 to 2016 has been 

developed from Maldives pole and line catch and effort data. Solutions for missing data were 

a random effects component used to account for missing mechanization information on the 

fleet 1974-1979 (Medley et al. 2017a) and the reconstruction of vessel length information using 

a vessel survival regression (described in Medley et al. 2017c). Fishing power effects related 

to vessel length are explained using a segmented regression that accounts for different classes 

of vessel. Both skipjack and yellowfin are combined into a single multivariate model, with 

skipjack catch rates standardized through a log-normal regression and yellowfin through a 

delta-lognormal regression. Additional fishing power effects which have not been recorded in 

the data have been estimated using subjective priors based on an expert meeting, and these 

could be included in the model. The model was fitted obtaining a MCMC approximation to the 

Bayes posterior for the abundance indices using Stan software. Remaining issues include poor 

estimation of catch rates for the smallest vessels and unaccounted for differences among 

landing atolls, as the reasons for these differences are not understood. Also, recent declines in 

logbook reporting rates are a cause for concern. All raw anonymized data and analysis code 

have been provided for full review. 

Introduction 

The Indian Ocean skipjack stock assessments in 2014 and 2017 used the Maldives pole and 

line standardized CPUE as an abundance index. These data were only available from 2004 

when information on each trip was recorded. Earlier data exist from 1970, but these were only 

available as monthly records by atoll and did not record individual trips. In addition, significant 

corollary information about the fleet operations was missing, making it difficult to use all data 

in a consistent index. Previous attempts have suggested that there was some potential in these 

earlier data, but abundance indices were not proposed because of the problems encountered 

(Kolody et al. 2010; Sharma et al. 2013). 

Pole and line data have not previously been used for an abundance index for yellowfin tuna in 

the Indian Ocean. As well as being subject to the same issues as those affecting skipjack, pole 

and line yellowfin should also be considered an index of juvenile abundance since the catch is 

generally limited to fish weighing less than 5kg. 
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The primary reason for not using older data is because of the substantial changes in the fleet 

which have led to significant change in fishing power. While these changes have been noted 

qualitatively, they were at best only partially captured in the catch and effort data in quantitative 

form. The CPUE time series show an increasing trend which is thought primarily caused by 

increasing fishing power. For these data to be used as an abundance index, these changes in 

fishing power need to be accounted for. 

In a preliminary evaluation of standardizing the catch and effort data, Medley et al. (2017a) 

suggested that a Bayesian approach could resolve the main problems encountered. It was 

proposed to combine the two main data sets into a single standardization model, include 

reconstructed fleet size composition from partial registry data (Medley et al. 2017c) and use a 

random effects model to bridge a gap 1974-1979 when information on motorization was 

missing. 

Methods 

Data 

Catch and effort data collected by the Maldives Ministry of Fisheries and Agriculture extends 

back to 1959. From 1959 data were only recorded from masdhoni (pole and line) vessels. In 

1966 the system was expanded to include the vadhu dhoni (trolling) fleet. At this time, numbers 

of tuna were only recorded in three categories: large skipjack; small skipjack and yellowfin; 

kawakawa and frigate tuna. The system was expanded again in 1970 to record five categories 

of tuna separately in addition to catches of reef fish. From 1970, with landings recorded by 

species, it should be possible to estimate a standardized CPUE index for each species. 

The fishery and data collection have undergone significant changes over this time (Table 1). 

Fishery data collection began in 1959 using an enumeration system. Landings were reported in 

numbers of fish to the island offices, or collected by the office staff at the time of landing. 

These data were compiled and monthly reports sent to the Ministry of Fisheries.  

Initially, the data collection system did not distinguish between gears. This was because 

traditionally, the Maldivian vessels would be gear specific to the type of fishing vessel (Adam, 

2012):  

- Bokkuraa (small wooden boats 3-5 m. originally powered with oars now mostly by 

outboard engines) used for trolling and handlining within atolls and on coral reefs. 

Currently they are used exclusively in the non-tuna fisheries.  

- Vadhu dhoni (5–8m originally sail now motorized) used for troll fishing near the islands 

and within atoll lagoons as well as general coral reef fishing. 

- Masdhoni (8-12m standard pole-and-line vessels), which used live bait to catch 

predominantly skipjack and yellowfin tuna.  



For the IPTP/MOFA Merged data 1970-20071, individual trips were not recorded, but landings 

and effort are reported in aggregated form, missing information on vessels and their operations. 

In some cases, additional information was reported that tracked fleet changes. Notably, the 

Ministry required island office staff to report catches of sailing and mechanized masdhonis 

separately from 1979 after much of the fleet had already transitioned. Other changes to the fleet 

which may well have increased efficiency but have not been recorded include changes in fleet 

size composition, improved design and engine power, improved bait catching and storage 

techniques. 

Table 1 A summary of the history of data collection and associated issues. 

Year  Notes  

1970  Reported catches may have been inflated particularly in 1970-71 because a 

number of fishermen reported grossly inflated catches in the hope of qualifying 

for a government prize. Although this incentive existed from mid 1950s to 

1981, the problem was most apparent in 1970-1971 when cash prizes were 

given directly to top crews (Anderson, 1986).  

1974  Vessel mechanisation starts, but is not recorded.  

1979  Mechanized vessels begin to be recorded separate from sailing vessels.  

1981  FAD installation begins. Prize money for high catches ceases.  

1989  Vessel type and number of dhoni begin to be recorded, but mixed gear trips are 

not identified in data. Use of conversion factors for enumerated small and large 

skipjack were also questioned on the grounds that the “traditional size” of 

large and small skipjack may have been mis-reported due to an artificial cut off 

weight for commercial purchase (1.5kg).  

2004  Trip landing data begins to be recorded.  

2010  Log-book data begins, but does not cover the entire fleet. Landings begin to be 

reported as numbers and/or weight rather than numbers.  

2014  Detailed log book data on trip begins to be recorded, including bait, set type, 

fishing times by gear and location. Weight rather numbers becomes 

commonest data to report landings.  

 

In addition, during the latter years to the early 1980s, fishing vessels which completed a certain 

number of fishing days were exempt from annual registration fee. This may have prompted the 

over-reporting of effort to avoid the fee (Anderson et al. 2003). Further exploration of the 

details of the fee system will be sought to make a possible correction for this, if possible. 

One of the largest potential source of errors for the catch weight data may be the conversion 

factors used to estimate the weight from recorded fish numbers (Anderson, 1986). Several 

factors have been derived over the years. For the standard data, mean weights have been 

estimated as 2.1kg for small skipjack and 5.7kg for large skipjack. There appears to be limited 

supporting evidence for these values and they are fixed over all years 1970-2016.   

                                                 
1 These data were merged by Adam (1999) as part of his PhD research 



Data were combined from five sources:  

1. The vessel specific data 2004-2015 have already been used in CPUE indices (Sharma 

et al. 2013; Medley et al. 2017b)  

2. The new 2016 logbook data were processed to be consistent with the 2004-2015 trip 

data and appended to the series. 

3. The IPTP/MOFA Merged data 1970-2007 were drawn from previous work (Adam 

1999) and represent the monthly catch and effort by vessel type. The structure of these 

data is different and the data set was organised separately. Only the pole and line data 

were used. 

4. “New” vessel specific data were found in 2017 for the period 1995-2002 inclusive.  

5.  The reconstructed fleet size composition 1970-2007 was estimated from vessel register 

using a survival model (Medley et al. 2017c). 

These vessel specific and logbook data are compatible as they have the same covariates. These 

have been combined into a single data set without adjustment. It should be noted however that 

there is some overlap between the logbook data and per-trip data collected by island staff. 

Some of the problems with the data can be seen by plotting the CPUE (Figure 1). CPUE shows 

a positive trend most likely due to increasing fishing power. There are some differences 

between mean CPUE derived from the different data sources. The variance of the estimates, 

particularly in recent times, has increased. 

Most of the data have the same underlying source 1970-2015, namely the island government 

staff who were required to collect these data. This system has now been replaced by the logbook 

data collection system. Although all the data 1970-2015 had the same source, they have been 

processed and maintained in different forms which have led to differences. The “new” data 

1995-2002 discovered recently are important because they were in raw unprocessed form. This 

significantly increased the overlap between the vessel specific data and the IPTP/MOFA 

Merged data 1970-2007, which greatly improves the index as it crosses between data sets. 

For the 1995-2016 data, records were filtered to remove all cases which were suspected as not 

being pure pole and line trips. This consisted of removing any data record where gear were not 

reported as pole and line, no skipjack were landed or “large” yellowfin were landed. This, as 

far as possible, created a relatively homogeneous data set of strict pole and line trips. 

In preparatory analyses, it was found that vessels 7m or less in length had catch rates equivalent 

to much larger vessels and seemed to contradict the otherwise clear trend of catch rates 

declining with vessel size. It was suggested that the smallest vessels would not be pole and line 

because of the lack of space for live bait. However, this would still not explain the reported 

high catches from these vessels. This issue needs to be explored, but some response was 

necessary for the current analyses. It is important because although in recent times these vessels 

only make up a small proportion of the trips, in the older data they make up a much higher 

proportion so an incorrect interpretation of these data could bias results. 



As an interim solution, it was proposed to remove data that were inconsistent with other 

information. Specifically, it was found that small vessels have a bi-modal catch rate 

distribution, and it was decided to remove the upper mode so as to reduce the impact of these 

suspect data. Therefore, data for vessels 7m or less with log catch rates above -1.5 were 

removed from the data (186 out of 11473 records). 

 

 

 

Figure 1 Nominal abundance indices for skipjack and yellowfin with standard errors. 

 



Model Structure 

Exploration of the model structure has not been exhaustive, but fairly wide exploration of the 

data suggested that the main factors have been captured. 

The main effects were assumed to be linear in relation to log-catch. Log effort (trip length) was 

added as an offset (no parameter was fitted to it). This approach is identical to fitting to log-

CPUE, but allowed greater flexibility during the exploration phase. 

The model used the following data components: 

• Atoll groups are treated as a categorical variable fitted as a simple main effect. Although 

there were significant differences between catch rates landed at different atolls, it was 

not clear how the atoll should affect the skipjack and yellowfin catch rates, so the 

current formulation may need to be revisited. Consistent with Sharma et al. (2013), 

atolls were grouped into North, Centre and South since this had the potential for having 

different catch rate time series. However, no further action was taken at this stage. Any 

further use of atolls in standardization will need to account for varying reporting rates 

among atolls. 

• Vessel size classes were identified. The classes were based on exploratory GLM fits to 

the data and motivated by expert opinion which implied discrete changes in vessel 

upgrades reflected in the size classes. 

• Vessel length is fitted as a covariate interacting with vessel size class. 

• Vessel power for the early time series separates sail and motor vessels. 

Other factors were identified in an expert meeting (MRC 2018) for which there is no 

quantitative data. These factors were included as an optional expert opinion offset for the 

model. 

To deal with the various issues arising for the different data sources, it was decided to use a 

Bayesian approach as the only way to deal with the problems in a consistent and transparent 

manner.  

The model included the following structures:  

• Combining yellowfin and skipjack into a single model, where we expect fishing power 

effects to be the same for both species. 

• Log-normal likelihood for skipjack CPUE observations and a delta-lognormal approach 

for yellowfin to explain inflated zero landings. 

• Piece-wise regression on vessel length allowing for discrete vessel classes.  

• Simple main effect adjustment for North and South regions relative to the Centre.  

• Combining older IPTP/MOFA revised data (Adam 1999) with recent vessel specific 

reports (1995-2002, 2004-2015) and logbook data (2016). 

• Estimating the unknown proportion of motorized vessel landings 1974-1979. The 

model estimates the proportion motorized fishing effort where they are missing using 



the beta distribution with the same mean and variance as the binomial for the proportion 

motorized.    

• The unknown fleet length composition for the IPTP/MOFA revised data 1970-2007 

using a length probability matrix derived from the vessel register (Medley et al. 2017c). 

Expert Opinion Offset 

A small workshop was convened 26 June 2018 at the Marine Research Centre, Malé with seven 

invited experts, who have a long experience of the tuna fisheries in the Maldives to assimilate 

subjective information on the tuna fishery 1970-2018 on changes that have had an impact on 

the tuna fleet’s fishing power (MRC 2018). The workshop consisted of two parts: 

1. A scoping to identify relevant changes in the fisheries and a general discussion of their 

effects. 

2. For each significant change identified within the scoping, an estimation of the period 

the change occurred and its impact on catch rates. 

The identification of important changes in the fishery, and the period those changes were 

introduced were agreed by consensus. For estimating the impact of the change, a simple Delphi 

method was applied, where after initial discussion, each participant wrote down what they 

thought the percentage increase in catch rates would be for the change. To do this, participants 

had to imagine the only change that occurred was the one under discussion, so that it was 

separated from other changes. Once all participants had submitted an estimate, estimates were 

shared and discussed, with justifications given by participants for their own estimate. Once 

discussions were complete, the participants provided another estimate which could be the same, 

or adjusted with respect to justifications provided by other participants. 

During the Delphi process, there was no encouragement to reach any consensus. Instead it was 

pointed out that the true answers were unknown and therefore these were subjective guesses, 

where the levels of difference between participants could indicate uncertainty. This was also 

used by participants, so that they agreed that their collective answers reflected appropriate 

uncertainty in the estimates. 

While there was clear consensus over which factors had affected fishing power, opinions 

differed on the scale of the effects. It is clearly difficult to estimate in quantitative terms what 

effects have been, so any estimate will be highly uncertain. 

Vessel length was identified as being a key determinant of vessel fishing power, and reasons 

were provided why this was the case. The effect of vessel length was estimated from the data, 

so there was no need to use expert judgement on this. However, six other effects not explained 

by vessel length were identified as important (Table 2).  

All these additional effects except drifting FADs (dFADs) coming in from the Indian Ocean,  

were used to create a fixed offset combining each effect based on logistic model with 98% of 

the change occurring between Year 1 and Year 2 and the scale of the change set by the Mean 



in Table 2 (Figure 2). The scale of the estimated effects suggested an increase in fishing power 

by as much as 400% based on these five effects alone. However, it was noted that the combined 

effects may be exaggerated, as the overall view of the experts was the combined effects, 

including vessel size, have led to an overall increased efficiency of around 300%. Therefore, 

this offset should perhaps be taken as an upper limit for these five effects. 

The fixed anchored FADs that have been placed around the islands are not included in the 

model. These were not included in the last skipjack indices because they did not explain catch 

rate changes (Medley et al. 2017b). At least some of the experts felt these FADs were not 

relevant to the commercial pole and line fleet, but are used by other fisheries. 

The experts also provided insight on the effects of motorization among others. Early models 

seem to underestimate the motorization effect, and reasons were provided why this might be 

the case. These models were incorrect and recent assessments suggest the effect of motorization 

is in line with early observations (Anderson 1987). However, the experts noted, for example, 

that engines installed in the early vessel took away hold space for bait and tuna and reduced 

labour costs, which may not lead to a simple relationship with fishing power. They also 

identified vessel design as a key effect, and that vessel types could be identified from vessel 

length. This led to modelling separate vessel classes based on their length so the model would 

have flexibility to account for discrete changes in fishing power due to vessel design. 

 

Table 2 Summary of expert assessment of changes in fishing not related to vessel size. Year 1 and Year 

2 refer to the period when the change occurred, the mean is the group estimate of the final percentage 

increase in fishing power in year 2 and the final state indicates how much of the change has occurred 

in Year 2. Less than 100% for the final state indicates incomplete spread of the technology among 

fishing fleets. For dFADs, it is believed changes have been ongoing throughout the period and a simple 

logistic will probably not model this effect. 

Effect Year 1 Year 2 Mean SD Final State 

Water sprays 1982 2000 48.6 21.7 100% 

dFADs 1982 >2018 21.4 12.2 Linear 

SCUBA baitfishing 2012 >2018 19.3 9.4 33% 

Baitfishing lights 1990 2005 65.7 27.7 100% 

Binoculars 1975 1990 39.3 10.2 100% 

Ice availability 1995 >2018 12.9 5.2 70% 

 



 

Figure 2 Fixed expert offset in fishing power accounting for five effects not recorded in the catch effort 

data set. 

Motorization 

The missing data (proportion motorized effort 1975-1978) were estimated as a latent variable 

(“random effect”) within the model. The probability for the proportion was based on a binomial 

for the approximate number of vessels in the fishery. Although this was calculated from the 

effort, effort was not used to calculate the variance because clearly effort days were not 

independent. The number of vessels contributing to the observed effort was not known, so this 

was estimated as effort / 24 (assuming each vessel on average fishes 24 days in a month). Lower 

values for the number of trials were preferred to ensure precautionary variance estimates. 

Some data on the number of motorized vessels in the fleet during this period was available. 

The following was obtained from Anderson (1987; Table 3). From 1979 onwards, motorized 

effort was recorded directly. 

 



Table 3 Registered motorized vessels 1974-1978 

Year  Motor Vessels  Sail Vessels  

1974  1  2131  

1975  42  2040  

1976  218  1940  

1977  413  1801  

1978  548  1631  

 

This suggests that mechanization began in 1974, so for 1974-1978 power is treated as 

“unknown”. A posterior probability density function for the probability vessels were motorized 

was constructed based on these observations assuming uniform prior and binomial probability 

based on motor and sail vessels as “success” or “failures”. The observations (Table 3) applied 

to whole years rather than quarters, so assuming vessel counts as independent trials will over-

estimate the certainty. To reflect this, the effective number of trials was reduced to 12.5% of 

these totals. 

It should be noted that the number of registered motorized vessels as a proportion of the whole 

fleet (~40%) was lower than the recorded motorized effort in 1979 (60-70%). This suggests 

that the most active vessels probably became motorized first. As such the register data above 

may underestimate the proportion of motorized effort. This may be another reason to reduce 

weight these data have in fitting. 

The motorization rate appeared to have been too rapid for the standard logistic function, and 

therefore a 3 parameter generalized logistic was used to model the switch. It was necessary to 

fix one of the parameters (α) which could not be fitted separately. The final had the potential 

to fit observations well (Figure 3).  

 



 

Figure 3 Exploratory fits of a generalized logistic model with fixed α parameter (-5.0). 

 

Priors 

Model parameters consist of the time series indices fitted to each quarter for skipjack and the 

yellowfin lognormal likelihood, a regional atoll effect (North, South and Centre), regression 

on vessel length with slopes and intercepts for each of the 6 vessel size classes and a 

motorization effect (Motor and Sail). A separate Bernoulli model was fitted for yellowfin 

presence/absence with the same parameters. For the two main data sources, the older IPTP-

MOFA and the newer vessel specific data, an adjustment parameter was fitted to allow 

seamless transfer. This parameter should be close to zero, but differences, particularly in 

assumed mean weights, may have led to differences. The parameter was estimated from the 

common data for the period 1995-2007. 

Very weak normal priors were provided for the abundance indices. These were set with a mean 

close to the mean of the raw data and large sigma (4.0). These priors should have little effect 

on the lognormal estimates, but prevented the yellowfin Bernoulli parameters failing to 

converge in the MCMC when a model category has no cases with no landings (zero “failures”). 

Any absolute effect on abundance indices of these priors should be negligible. 

The lognormal and Bernoulli vessel length slope parameters for the first size class exhibited 

significant convergence problems during exploratory fits. In addition, the estimates of the 

regression slope for these vessels was negative, indicating increased catch rates for smaller 

vessels within this size class. This was already noted as a problem, and highly unlikely to be a 



real effect. Previous removal of some of these data only partially fixed this problem. Therefore, 

a highly informative prior was set on these parameters, effectively binding these slope 

parameters to zero. Therefore, effectively all vessels 2-7m length in this model have the same 

catch rates. 

For the additional generalized logistic parameter (α), estimation was difficult because of the 

model form produced discontinuities during the fit, exacerbated by the lack of information on 

the parameter in the available data. This could be resolved by applying a very informative prior, 

but this would be little different to fixing the parameter at a reasonable level based on maximum 

likelihood fits. The remaining two parameters of the generalized logistic were fitted normally 

to allow for any error in the observations. 

For the expert opinion offset, it was attempted to use the standard deviations from the 

differences in opinion to represent expert uncertainty by applying a normal prior and fitting 

these parameters. Balancing the statistical weight on aliased priors which have no independent 

information in the likelihood against other components in the model was difficult. Without 

arbitrary intervention, such as setting the prior sigma parameters very low, final estimates did 

not correspond to the original expert opinion. Therefore, the parameters were fixed so that 

including the offset would represent an alternative case for a sensitivity run as a worst case 

scenario for abundance decline. 

 

Table 4 Fitted parameters and priors. Absence of priors implies a uniform distribution. 

Parameter  Number  Description  Prior  

Lognormal 

Model  

   

Itsj  188  Skipjack time series means  normal(-2, 4)  

Ityf  188  Yellowfin time series means  normal(-3, 4)  

so  1  Data source effect: old IPTP data 

vs new data  
normal(0, 0.4)  

at  2  Atoll effect by region  

 

vc  5  Vessel class intercept  

 

ve  6  Vessel length slopes for each class  ve[1] ~ normal(0, 0.01)  

pw  1  Sail vessel effect  

 

sig  4  Residual sd  cauchy(0, 1)  

Yellowfin 

Bernoulli 

Model  

   

Izyf  188  Binomial time series means  normal(3, 4)  

soz  1  Data source effect: old IPTP data 

vs new data  
normal(0, 0.4)  



atz  2  Atoll effect  

 

vcz  5  Vessel class intercept  

 

vez  6  Vessel length slopes for each class  vez[1] ~ normal(0, 

0.01)  

pwz  1  Sail vessel effect  

 

efz  1  Effort effect  

 

Motorization 

Model  

   

lg_mot  3  Generalized logistic parameters for 

the motorised proportion  

 

  

50% Motorized  uniform(1970, 1979)  
  

Steepness  gamma(1.0, 0.5)  
  

α Fixed: -5.0  

mot_p  20  Proportion motorised effort where 

unknown  

 

FPoffset  5  Expert opinion on percentage 

increase of 5 effects  

 

  

Water sprays  Fixed: 0.486  
  

SCUBA baitfishing  Fixed: 0.193  
  

Baitfishing lights  Fixed: 0.657  
  

Binoculars  Fixed: 0.393  
  

Ice availability  Fixed: 0.129  

 

Fitting the Model 

The model was developed in Stan (Stan Development Team 2017), which provided a flexible, 

robust platform for fitting Bayesian models using MCMC. Stan is designed to improve MCMC 

performance by using Hamiltonian Monte Carlo (HMC) sampling. Among other things, it uses 

auto-differentiation to improve MCMC convergence and can cope with complex models which 

other software is unable to deal with. 

For the vessel specific data, the main effects were fitted with a log-normal likelihood, with 4 

separate scale parameters, for the two data sources and two species. 

For the motorized random effects model, the proportion motorized was fitted through a beta-

binomial (assuming a uniform prior) to the observed motorized / non-motorized trips for those 

quarters where the data exist with the expected proportion as a logistic function of time. The 

random effect variable was then estimated using the beta probability function consistent with 

a binomial having mean and variance taken from this logistic function and overall number of 

trips in that quarter. 



For the vessel length model, the proportion of trips undertaken by vessels at each length was 

assumed to be proportional to the vessel fleet size composition estimated separately (Medley 

et al. 2017c). This proportion was multiplied by vessel length effect on the catch rate to generate 

the expected overall effect for each quarter. 

The data were assembled as a list in R of simple vectors with the same names as data structures 

in the Stan model. The data were split as appropriate between skipjack and yellowfin, and the 

old IPTP data with known and unknown proportion of vessels motorized, and the new vessel 

specific data.  

Standard generalized linear models were used to provide good first guesses for parameter 

estimates. These estimates were then adjusted towards the posterior mode using the Stan 

“optimizing” function. The output initial parameters were then checked by plotting and the 

optimizing function run as many times as necessary. Models with and without the expert 

opinion offset were fitted separately. 

The Stan model was written in C++ modelling language and compiled using the Rtools C++ 

compiler in R. The Stan model was compiled and run in R (R Core Team, 2018) using the 

package “rstan” (Stan Development Team, 2018). In this case, 4 MCMC chains were run in 

parallel after 500 warm-up simulations to create 1000 random draws in total from the posterior. 

A MCMC test run was conducted to check the model was running correctly. Debug-printing 

was used to check calculations were as expected. 

Results 

MCMC Convergence 

The Stan fit was reviewed and MCMC convergence confirmed. The (𝑅̂) statistic, which should 

be close to 1.0 and the effective sample size give a general indication of the convergence and 

how well they have been estimated. All parameters were reviewed, but the important 

parameters in this context are the time series indices which were reasonably well estimated 

(Table 5), although the simulations could be run for longer to improve the estimates. 

 



Table 5 Summary worst MCMC diagnostics for time series parameters without (top) and with 

(bottom) expert opinion offset. 

No Offset Minimum  Maximum  

SKJ Eff. N  82  1000  

SKJ  𝑅̂  0.997  1.012  

YFT Eff. N  114  1000  

YFT 𝑅̂ 0.996  1.016  

YFT P/A Eff. N  276  1000  

YFT P/A  𝑅̂ 0.997  1.021  

   

Expert Offset Minimum  Maximum  

SKJ Eff. N  155  1000  

SKJ  𝑅̂  0.997  1.025  

YFT Eff. N  216  1000  

YFT  𝑅̂  0.996  1.027  

YFT P/A Eff. N  293  1000  

YFT P/A  𝑅̂  0.997  1.012  

Abundance Indices 

The quarterly indices are directly estimated as parameters in the model. The yellowfin 

abundance index is obtained by combining the lognormal and Bernoulli estimates. 

 



 

 

 

Figure 4 Log nominal CPUE and fitted abundance indices estimated from the model with and without 

the expert opinion offset for skipjack (top) and yellowfin (bottom). Error bars represent the 95% 

confidence interval for the estimates. 

 

Vessel Size Effect 

The vessel size category regression estimates are similar to the maximum likelihood estimates. 

Note that the negative slope regression estimate for the smallest size class has been forced 



through the prior to be relatively flat to avoid significant increasing catch rates with decreasing 

vessel length. 

 

 



Figure 5 Median and 95% probability intervals for vessel size parameters, adjusted to plot over log-

CPUE observations 1995-2016. 

Motorization 

The motorization model bridges the gap when motorization data does not exist (Figure 6

 

). The use of sail significantly reduced the catch rates for vessels and explains the early 

increasing catch rate trend in the 1970s as motors were installed. The results suggest sail boats 

had around 30% of the catch rates for motor vessels and were less likely to land yellowfin. 

The random effects model fits observations well 1979 onwards, but the model may have a 

tendency to overestimate early motorization despite increasing the steepness in the generalized 

logistic model. There may be an argument to fix the random effects mean to a model that most 

agrees with available registry and effort data (Figure 5) rather than fit it in the final model. 

 



 

Figure 6 Proportion mechanized with observations, logistic curve defining expected proportion and 

“random effect” estimates with 90% confidence interval. 

 

Conclusion 

The primary objective of this exercise has been to estimate abundance indices suitable for use 

in stock assessments. The model has used all available information in 2018 to develop credible 

indices of abundance for skipjack and juvenile yellowfin caught on Maldives pole-and-line 

gear. Abundance indices show a clear decline consistent with possible population trends and 

in contrast to the nominal catch rates. The standardization process has been carefully 

documented and justified, providing full data and code so the process can be reproduced from 

raw data sets. This should allow independent review of the indices and the process applied to 

obtain them, to ensure they are correct and as far as possible reflect changes in abundance of 

these species. 

Both skipjack and yellowfin show an upturn in abundance since 2010. For yellowfin, this could 

indicate a slight reversal of the long term downward trend in recruitment. However, the 

common pattern in both skipjack and yellowfin, and the fact that it coincides with the shift to 

the logbook system, suggests that the pattern requires independent support from other 

information before being treated as real population change. 

Two types of indices were produced. The “no offset” model only used the available data, 

whereas the “expert opinion offset” model used subjective information on the likely impact of 

changes in fishing operations which have not been recorded. Including the “expert opinion 



offset” results unsurprisingly in lower abundance estimates for these species. These might be 

considered as best and worst case scenarios for tuna abundance. 

Outstanding issues that may require further consideration and research include: 

• The unrealistic increasing catch rates for small vessel less than 8m length. 

• Mean fish weight has been included in the data as a mixture of observations and best 

guesses. This has added to the index errors in ways that are not fully understood. Further 

review of the use of fish mean weight to convert recorded fish numbers to estimated 

landings weight could improve the indices further. 

• Government initiatives to encourage fish production may have affected data records in 

the past, but no clear pattern emerged. There could still be hidden biases and this adds 

to general uncertainty, but lack of a pattern suggests that any biases are most likely 

small compared to other effects. This management issue has been resolved and should 

not affect recent or future data. 

• Current reporting rates have been declining while the government has switched to 

logbook system. Unfortunately the older system has been discontinued. It is 

recommended to 1) significantly improve reporting rates 2) analyse the data to provide 

a better bridge between the old and new data similar to that which has been done for 

the IPTP and vessel specific data. 

• Some of the observed fluctuations in the abundance indices could be due to other 

unmeasured effects. Perhaps of most concern are drifting FADs, which are known to 

have increased use by purse seiners, but could also could increase through natural 

events (e.g. Tsunamis) and other human activities (e.g. lost fishing gear, floats, litter). 

Increased availability of floating FADs may not only add to the overall trend, but could 

raise the effective catchability over short term events producing fluctuations in catch 

rates. 

• Likely past under-reporting of fishing effort (measured by number of days at sea). 

Vessels are likely to have carried out multi-day fishing but report this as a single trip 

recorded as 1 day of fishing. In this case their catch relative to effort would be over-

estimated. This problem should now have been resolved through the logbook reporting, 

but the historical data may be improved by further investigation of this issue. 
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