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Abstract 

This working paper presents applications of the generalized Bayesian State-Space Surplus 

Production Model framework JABBA (Just Another Bayesian Biomass Assessment) using 

the recent 2017 IOTC assessments of Indian Ocean blue shark and swordfish as working 

examples. The assessment input data comprised multiple, partially conflicting, fisheries-

depend abundance indices over varying time spans, as commonly encountered in assessments 

of large pelagic fishes. We therefore focus on inbuilt JABBA features for evaluating, 

identifying and potentially improving poor model fits, which may arise from fitting of 

multiple standardized CPUE time series with conflicting trends to the available catch time 

series. All six assessment scenarios presented here can be reproduced in less than 15 min (~ 

150 seconds per run), which highlights that JABBA represents a powerful tool for rapidly 

producing large number of alternative scenarios, including readily presentable diagnostic and 

output graphs, during typically time constraint IOTC assessment workshops.  
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1. Introduction 

The stock assessment software ‘Just Another Bayesian Biomass Assessment’ JABBA was 

applied to produce and evaluate assessment runs using the recent IOTC blue shark and 

swordfish stock assessments as an example. JABBA is generalized Bayesian State-Space 

Surplus Production Model framework that has previously been applied and tested in the 2015 

ICCAT South Atlantic blue shark, the 2017 Mediterranean albacore assessment, the 2017 

North and South Atlantic shortfin mako shark assessments and the 2017 ICCAT South 

Atlantic swordfish assessment. JABBA is coded within a user-friendly R to JAGS interface to 

provide a means to generate reproducible stock status estimates and diagnostics. Here, we 

focus on inbuilt JABBA features for evaluating, identifying and potentially improving poor 

fits to Indian Ocean swordfish stock assessment data that may arise from fitting of multiple 
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standardized CPUE time series with conflicting trends to the available catch time series. To 

ensure reproducibility, JABBA will be distributed through the global open-source platform 

GitHub and will soon be accessible free at https://github.com/JABBA, pending formal 

publication of the full JABBA software documentation (Winker et al. in prep.). 

 

2. Material and Methods 

2.1 Model formulation 

JABBA is generalized in the sense that the production function can take on various forms, 

including conventional Fox and Schaefer production functions, which can be fit based on a 

range of alternative error assumptions. The surplus production function is formulated in the 

form of the generalized three parameter by Pella and Tomlinson Surplus Production Model 

(SPM) (1969): 
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where r is the intrinsic rate of population increase at time t, K is the unfished biomass and m 

is a shape parameter that determines at which B/K ratio maximum surplus production is 

attained. If the shape parameter is m = 2, the model reduces to the Schaefer form, with the 

surplus production (SP) attaining MSY at exactly K/2. If 0 < m < 2, SP attains MSY at 

depletion levels smaller than K/2 and vice versa. The Pella-Tomlinson model reduces to a 

Fox model if m approaches one (m=1) resulting in maximum surplus production at ~ 0.37K, 

but there is no solution for the exact Fox SP with m = 1. The shape parameter m can be 

directly translated into BMSY/K and thus determines the biomass depletion level where MSY 

is achieved, such that: 
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It follows that Bmsy is given by: 
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and the corresponding harvest rate at MSY (HMSY) is: 
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where the harvest rate F is defined here as the ratio of: 

https://github.com/JABBA
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(5)  
B

C
F   . 

where C denotes the catch.  

 

We formulated JABBA building on the Bayesian state-space estimation framework proposed 

by Meyer and Millar (1999). The biomass By in year y is expressed as proportion of K (i.e. Py 

= By / K) to improve the efficiency of the estimation algorithm. The model is formulated to 

accommodate multiple CPUE series i. The initial biomass in the first year of the time series 

was scaled by introducing model parameter   to estimate the ratio of the biomass in the first 

year to K (Carvalho et al., 2014). The stochastic form of the process equation is given by: 
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where y  is the process error, with 2~ (0, )y N   , 
1, yfC  is the catch in year y by fishery f.  

 

The corresponding biomass for year y is: 

 

  (7) KPB yy  , 

 

The observation equation is given by: 

 

  (8)  iyeBqI yiyi
,

,


        y = 1, 2,…, n.   

  

where, qi is the estimable catchability coefficient associated with the abundance index i and 

iy, is the observation error, with ),0(~ 2
,,, iyiy N  ,where 2

,, iy  is the observation variance  in 

year y for index i.  

 

2.2 Prior formulations 

For both species, priors were kept consistent across all the scenarios. All catchability 

parameters were formulated as uninformative uniform priors, while the process variance and 

estimable observation variance priors were implemented by assuming the following inverse-

gamma distributions:  
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The process variance prior corresponds to mean process error of   = 0.056 (CV = 0.65). 

The prior for the estimable observation variance component assumes an uninformative 

inverse-gamma distribution with both gamma scaling parameters set to 0.001. Because most 

of the indices provided were deemed over-precise with CV’s < 0.1, a minimum fixed 

observation error of 0.25 was added a priori to all time series..  

 

 

2.2.1 Blue shark  

The Schaefer Model production function was assumed for blue shark. A vaguely informative 

lognormal prior for K = 600,000 metric tons with a CV of 200% was assumed. For r, the 

lognormal prior (mean = log[0.267], CV = 0.075) based on updated life history analysis was 

specified. The initial biomass depletion prior (φ = B1950/K) was inputted in the form of a 

lognormal prior with a CV = 0.25, assuming that the Indian Ocean stock was unexploited in 

1950. 

 

2.2.2 Swordfish 

For swordfish we assumed a Fox production function. A vaguely informative lognormal prior 

for K = 200,000 metric tons with a CV of 200% was assumed. For r, a lognormal prior (mean 

= log[0.42], CV = 0.4), which closely matched the priors used for the 2017 ICCAT North and 

South Atlantic stock assessments. As with blue shark, the initial biomass depletion prior (φ = 

B1950/K) was inputted in the form of a lognormal prior with a CV = 0.25, assuming that the 

Indian Ocean stock was unexploited in 1950.  

 

2.3 Scenarios 

During the 2017 IOTC stock assessments of blue shark and swordfish, the evaluation of 

alternative scenarios specifically focused on identifying and improving poor fits to CPUE 

series that may arise from fitting of multiple standardized CPUE time series with conflicting 

trends to the available catch time series (Figs 1). For Indian Ocean blue shark, three 

alternative catch time series estimations were made available prior to the assessment: (1) 

Nominal, (2) GAM and (3) EUROPA. However, for the purpose of this report, we only 

present assessment runs based on the GAM catch series, which represents substantially raised 

catch estimates compared to the Nominal data, starting in 1950 (Fig 1a).    
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Fig.1. Total catch estimates for Indian Ocean blue shark (left) and swordfish (right) for the period 

1950-2015.  

 

2.4.1 Blue shark CPUE scenarios 

A total of 7 standardized CPUE time series from longline fisheries were available for the 

2017 blue shark assessment. These were (1) Japan early (JPN1, 1971-1993), (2) Japan late 

(JPN2, 1992-2015), (3) Portugal (EU-POR, 2000-2015), (4) Reunion (EU-FRA, 2007-2015), 

(5) Indonesia (IND, 2005-2015), Spain (EU-ESP, 2001-2015) and Chinese-Taipei (CH-TAI, 

2004-2015). Initially, the standardized CPUE indices were separated into two groups, with 

Group 1 including JPN1, JPN2, EU-POR, and EU-FRA and Group 2 including JPN1, JPN2, 

EU-ESP, IND and CH-TAI. The third scenario included all CPUE time series. Based on 

initial JABBA fits and residual diagnostics, Group 1 was selected as the base-case Scenario 1, 

which also excluded the early JPN1 CPUE index because of concerns of adequate blue shark 

catch reporting and potential issues related to data filtering procedures. The alternative run, 

including all CPUE indices, was retained for comparison leading to the following two 

scenarios which were evaluated assuming the Schaefer form of the production function: 

 

Scenario 1: JPN2, EU-POR and EU-FRA with the “GAM” catch series (base-case) 

Scenario 2: All indices with the “GAM” catch series 

 

Scenario 2 was used as a reference case to conduct sensitivity runs by dropping one CPUE 

index at a time. Sensitivity was assessed with respect to the stock status estimates B/BMSY and 

F/FMSY. 
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Fig.  2. Aligned CPUE indices according to Scenarios 1-2 (S1-S2) for Indian Ocean blue shark, which 

were produced using the state-space CPUE averaging tool implemented in JABBA. The underlying 

abundance trend is treated as an unobservable state variable that follows a log-linear Markovian 

process, so that the current mean relative abundance was assumed to be a function of the mean 

relative abundance in the previous year, an underlying mean population trend and lognormal process 

error term. The CPUE indices are aligned with the base index via estimable catchability scaling 

parameters. 

 

 

2.5.2 Swordfish CPUE scenarios 

Following evaluations of initial assessment fits based on a variety of modelling frameworks, 

including fits from Stock Synthesis 3 (ss3) as well as deterministic (APSIC) and state-space 

Bayesian Surplus Production Models, the WPB considered the years 1994-1999 of the 

standardized CPUE series from Japan (JPN.II) and the EU-POR CPUE index for the period 

2000-2015  as primary inputs for a potential base-case scenario. In this working paper, we 

specifically evaluate the effects of adding additional CPUE indices in terms of model fits, 

stock status and associated uncertainty. The additional CPUE indices were selected among 

the least likely to cause data conflicts with the two primary CPUE indices JPN.II and EU-

POR. The additional CPUE indices identified were: (1) the extended Japanese CPUE series 

(1994-2015; JPN.II), (2) the South African CPUE series (2004-2015; ZAF) and (3) the 

second part of the Taiwanese CPUE series (1994-2015; TAI.II). According to the sequential 

addition of each CPUE index (Fig. 3), the following four scenarios were formulated:  

Scenario 1: JPN.II3 (1994-1999) + EU-POR (2000-2015)  

Scenario 2: JPN.II (1994-2015) + EU-POR (2000-2015) 

Scenario 3: JPN.II (1994-2015) + EU-POR (2000-2015) + ZAF (2004-2015) 

Scenario 4: JPN.II (1994-2015) + EU-POR (2000-2015) + ZAF (2004-2015) + 

TAI.II (1994-2015) 

In addition, Scenario 4 was used as a reference case to conduct sensitivity runs by dropping 

one CPUE index at a time. Sensitivity was assessed with respect to the stock status estimates 

B/BMSY and F/FMSY. 
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Fig.  3. Aligned CPUE indices according to Scenarios 1-4 (S1-S4) for Indian Ocean swordfish, which 

were produced using the state-space CPUE averaging tool implemented in JABBA. The underlying 

abundance trend is treated as an unobservable state variable that follows a log-linear Markovian 

process, so that the current mean relative abundance was assumed to be a function of the mean 

relative abundance in the previous year, an underlying mean population trend and lognormal process 

error term. The CPUE indices are aligned with the base index via estimable catchability scaling 

parameters. 

 

 

3. Results and Discussion 
 

3.1. Convergence  

 

All but the swordfish Scenario 4 JABBA model runs showed robust convergence diagnostics. 

Although the Heidelberger and Welch test could not reject the hypothesis that the MCMC 

chains were stationary at the 95% confidence level for any of the estimable parameters for all 

scenarios, the swordfish Scenario 4 showed some severe distortion in the process error 

deviance (Fig. 4), which also resulted in implausible result outputs. Further evidence of 

model misspecification was that the process error estimate exceeded 0.2 (Thorson et al., 

2014). By subsequently increasing the fixed variance component from 0.252 to 0.32 and 

thereby down-weighing the CPUE indices, it was possible to achieve a more stationary 

process error deviance that also resulted in interpretable assessment outputs for the swordfish 

Scenario 4.  
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Fig. 4. Process error deviations trajectories for the swordfish Scenario 4, run with two 

different fixed observation variance components of 0.252 (left) and 0.32 (right)  

 

 

3.2.1 Blue shark CPUE fits and sensitivity  

 

A summary of the model fit statistics for the blue shark Scenarios 1 and 2 is presented in 

Table 1. Adding all available CPUE indices to the JABBA model had a notably negative 

effect on the goodness of the fit as judged by the RMSE, but also helped to substantially 

increase the residual degrees of freedom (DF) as an indicator of predictive power. 

 

Table 1: Summary of JABBA fit statistics for Indian Ocean blue shark. Nobs: Number CPUE 

observations, Np: Number of model parameters, DF: Residual degree of freedom, Root-mean-squared-

error (RSME), Deviance Information Criterion (DIC). 

 

Statistic Scenario 1 Scenario 2 

Nobs 49 110 

Np 10 18 

DF 39 92 

RMSE(%) 32.3 46.5 

DIC -95 80.3 

 

 

For Scenario 1, the first few CPUE values of the JPN index showed a systematic departure in 

the residual pattern, whereas after 2000, CPUE residuals fluctuated more evenly around 0 

(Fig. 5). The underlying residuals trends CPUE appeared to be consistent between the EU-

POR and EU-FRA indices, which both indicated conflicts in trends with the JPN index (Fig. 

3). By contrast, Scenario 2, which included all CPUE series, revealed a lack of fit for several 

indices in recent years (Fig. 5). In particular, the IND index resulted in a poor fit, while ESP-

EU and CH-TAI showed notably correlated residual patterns. The addition of a number of 

poorly fitting indices can largely explain improved fit of Scenario 1 compared to Scenario 2 

in terms of the RMSE (Fig. 5), with the latter decreasing from 46.5% for Scenario 2 to 32.3% 

for Scenario 1. Comparisons of observed and predicted CPUE indices for individual time 

series are shown in Appendix I (Figs. A1-A2). 
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The sensitivity analysis of the complete set of CPUE indices demonstrated, however, that the 

stock status estimates for B / BMSY and F / FMSY were generally fairly insensitive to excluding 

any one CPUE series at a time (Fig. 6). The most sensitive CPUE indices were JPN1 and 

JPN2. While excluding the JPN1 index only affected the B/BMSY trajectory retrospectively, 

the exclusion of the JPN2 index showed stronger effects on current stock status estimates, 

which were more pessimistic both in terms of B/BMSY and F/FMSY. Although excluding the 

IND index had no discernible influence on either B/BMSY or F/FMSY, it resulted in a substantial 

decrease in the residual-mean-squared-error (Fig. 6), thus indicating an overall improvement 

of the goodness-of-fit.        

 

 

 
Fig. 5. JABBA residual diagnostic plots for the Schaefer model scenarios (S1-S4) for Indian Ocean 

blue shark showing the log-residuals for CPUE series. Loess smoothers were fitted across all CPUE 

residuals and the width of the boxplots illustrates the relative extend of conflicts among CPUE 

residuals. The Residual-Mean-Error (RMSE%) is provided as good-of-the-fit metric together with the 

DIC.   

 

 
Fig. 6. Sensitivity analysis showing the effects of excluding one CPUE index at the time on the stock 

status estimates of F /FMSY and B /BMSY for Indian Ocean blue shark, using Scenario 2 as a reference 

(All CPUE estimates). Residual-mean-squared errors (RSME) represent a statistic for the goodness-

of-fit, and are provided in brackets.   
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3.2.2 Swordfish CPUE fits and sensitivity  

 

A summary of the model fit statistics revealed that adding the extended Japanese time series 

in Scenario 2 slightly increased the RSME (Table 2). Compared to Scenario 2, adding the 

ZAF CPUE improved the goodness of the fit again as judged by the RMSE, and also helped 

to substantially increase the residual degrees of freedom (DF).   

 
Table 2: Summary of JABBA fit statistics for Indian Ocean swordfish. Nobs: Number CPUE 

observations, Np: Number of model parameters, DF: Residual degree of freedom, Root-mean-squared-

error (RSME), Deviance Information Criterion (DIC). 

  

Statistic Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Nobs 22 37 49 71 

Np 8 8 10 12 

DF 14 29 39 59 

RMSE (%) 18 18.7 18.4 18.7 

DIC -341 -336.9 -192.2 -208.4 

 

Graphical JABBA residual diagnostics for all four scenarios are presented in Fig. 7. In 

particular, Scenarios 2-4 showed little evidence of a systematic residual pattern as indicated 

by a close to straight loess spline. By comparison, Scenario 1 indicated slight departures from 

zero, particular at both tails of the available CPUE time series. Scenario 2 and 3 appeared to 

improve the stationary stability in the residual pattern compared to Scenario 1. Including the 

TAI.2 CPUE series decreased the goodness fit, which points towards data conflict arising. 

Comparisons of observed and predicted CPUE indices for individual time series are shown in 

Appendix I (Figs. A3-A8).  

     

The sensitivity analysis based on all four CPUE indices demonstrated that the stock status 

estimates for B/BMSY and F/FMSY were generally fairly insensitive to excluding any one CPUE 

series at the time (Fig. 8). Excluding the JPN.II index showed the only discernible effect, but 

only for the period 2000-2010 and not for the final assessment year 2015. Excluding either 

JNP.II or TAI.II improved the fits, again indicating data conflict between the two time series. 

Notably, excluding the ZAF index increased the RMSE, which can be interpreted as a 

stabilizing property of the ZAF CPUE (Fig. 8).     
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Fig. 7. JABBA residual diagnostic plots for the Fox model scenarios (S1-S4) for Indian Ocean 

swordfish showing the log-residuals for CPUE series. Loess smothers were fitted across all CPUE 

residuals and the width of the boxplots illustrates the relative extent of conflicts among CPUE 

residuals. The Residual-Mean-Error (RMSE%) is provided as a good-of-the-fit metric together with 

the DIC.   

 
Fig. 8. Sensitivity analysis showing the effects of excluding one CPUE index at a time on the stock 

status estimates of F /FMSY and B /BMSY for Indian Ocean swordfish, using Scenario 4 as a reference 

(All CPUE indices). Residual-mean-squared errors (RSME) represent a statistic for the goodness-of-

fit, and are provided in brackets.   
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3.3.1 Reference points and stock status for blue shark 

 

Model parameters, stock depletion (B/K) and current stock status estimates (B / BMSY and F / 

FMSY) are provided for the two Schaefer model scenarios in Table 3. For the final assessment 

year (2015), the estimates from the two runs were similar suggesting that biomass depletion 

is well above BMSY, but that current fishing mortality was either slightly below (Scenario 1) or 

slightly above FMSY (Scenario 2), respectively.  

All B / BMSY trajectories predicted that although biomass has started to decrease at a faster 

rate since 2000, it remained well above BMSY until 2015. Correspondingly, fishing mortality 

has been increasing sharply since 2000 and is predicted to either approach FMSY (Scenario 1) 

or to have marginally exceeded FMSY (Scenarios 2) in 2014-2015 (Fig. 9).  

 

The extent of stock depletion and overfishing in both models are further illustrated using the 

Kobe plot (Figure 10). For the base-case Scenario 1, the current biomass (B2015) is 33.3% 

above BMSY and the value for current fishing mortality (F2015) is 13.1% below FMSY. The stock 

condition is predominantly in the Kobe Plot green zone with probabilities of 43-59% (Figure 

10). Despite strong evidence that current biomass is above BMSY, the current catch levels 

clearly exceed the stock’s average surplus production (Figure 11). As such, there is increased 

risk of unsustainable fishing if catches continue increasing at recent rates.  Future projections 

under constant TAC suggest that current catches in excess of 50 thousand metric tons cannot 

be sustained in the medium term and would need to be reduced to less than 40 thousand 

metric tons to maintain stock levels at around BMSY (Fig. 12). 

 

Table 3. Summary of posterior estimates (medians) and 95% Bayesian Credibility Intervals 

(C.I.s) of parameters from the four JABBA scenario fits to Indian Ocean blue shark catch and 

CPUE series, assuming a Schaefer production function.  

  Scenario 1 Scenario 2 

Estimates Median 2.50% 97.50% Median 2.50% 97.50% 

K 663234.5 461036.2 1239944.0 582298.4 431406.2 853830.1 

r 0.270 0.234 0.312 0.272 0.235 0.314 

σ 0.07 0.071 0.071 0.071 0.071 0.071 

FMSY 0.135 0.117 0.156 0.136 0.117 0.157 

BMSY 331617.2 230518.1 619972.0 291149.2 215703.1 426915.0 

MSY 44780.9 31042.4 84566.4 39426.0 29296.8 58413.2 

B1950/K 0.899 0.625 1.048 0.875 0.624 1.045 

B2015/K 0.66 0.466 0.872 0.661 0.5 0.836 

B2015/BMSY 1.319 0.931 1.743 1.323 1.000 1.671 

F2015/FMSY 0.925 0.405 1.736 1.051 0.600 1.709 
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Fig. 9. Trajectories of F/FMSY and B/BMSY for Indian Ocean blue shark (1950-2015) for the two 

scenarios (S1-S2). Grey shading indicates 95% credibility intervals. 

 

 

 

 
Fig. 10. Kobe plots for the for JABBA scenarios (S1-S2), showing the estimated trajectories (1950-

2015) of B/BMSY and F/FMSY for Indian Ocean blue shark. The grey shaded areas denote the 50%, 80% 

and 95% credibility intervals for the final year assessment estimate.  The proportion of points falling 

within each quadrant is indicated in the figure legend. 
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Fig. 11. JABBA SP-phase plot showing estimated surplus production curves and catch trajectories as 

a function of biomass for the Schaefer model scenarios 1-4 (S1-S4) over the period 1950-2015 for the 

Indian Ocean blue shark. The inflection point at MSY is highlighted together with the blue shaded 

area denoting its 95% credibility region. The plot background follows the color scheme of Kobe phase 

plot to facilitate interpretation, but additionally it superimposes plot regions (yellow dashes) where 

biomass can recover under a constant quota while in the red overfished state (B<BMSY, F > FMSY but 

SP > Catch). 

 

 

 

 

 

 
Fig. 12. Projections of biomass depletion based on the Schaefer model base case (Scenario 1) for 

Indian Ocean blue shark for various levels of future catch. The dashed line denotes BMSY and grey 

shaded areas depict the confidence regions. 
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3.3.2 Reference points and stock status for swordfish 

 

Model parameter, stock depletion (B/K) and current status estimates (B/BMSY and F/FMSY) for 

Indian Ocean swordfish are provided for the four Fox models scenarios in Table 4. For the 

final assessment year (2015), all runs produced results suggesting that biomass depletion and 

current fishing mortality were close to BMSY and FMSY, respectively. Scenario 3 and 4 are 

marginally more pessimistic, with medians of current fishing mortality marginally above 

FMSY.  

 

All F/FMSY trajectories predicted that sustainable fishing mortality had been exceeded in 

approximately 2005 and that biomass levels had approached (Scenario 1) or dropped just 

below BMSY (Scenarios 2-4) between 2006 and 2007 (Fig. 13). The subsequent decrease in F 

towards 2010 appears to have promoted a slight recovery in biomass. The shapes of F /FMSY 

and B /BMSY trajectories were similar across Scenarios 1-4.  

 
Table 4. Summary of posterior estimates (medians) and 95% Bayesian Credibility Intervals (C.I.s) of 

parameters from the four JABBA scenario fits to Indian Ocean swordfish catch and CPUE series, 

assuming a Fox production function.  

  Scenario 1 Scenario 2 

Estimates Median 2.50% 97.50% Median 2.50% 97.50% 

K 264585.2 137432.1 507121.7 273653.2 181151.1 446504.7 

r 0.343 0.190 1.019 0.307 0.187 0.479 

 (psi) 0.875 0.598 1.084 0.89 0.581 1.051 

σ 0.06 0.032 0.089 0.055 0.032 0.089 

FMSY 0.343 0.189 1.018 0.306 0.186 0.478 

BMSY 97384.1 50583.7 186652.9 100721.7 66675.1 164342.0 

MSY 31476.4 25731.7 81952.1 30389.9 26246.5 41238.6 

B1950/K 0.875 0.598 1.082 0.89 0.581 1.05 

B2015/K 0.467 0.229 0.866 0.431 0.301 0.653 

B2015/BMSY 1.270 0.622 2.352 1.172 0.819 1.774 

F2015/FMSY 0.809 0.169 1.851 0.911 0.452 1.414 

  Scenario 3 Scenario 4 

Estimates Median 2.50% 97.50% Median 2.50% 97.50% 

K 272164.9 185400.1 423862.5 255764.8 169530.1 392495.7 

r 0.294 0.176 0.464 0.313 0.190 0.493 

 (psi) 0.825 0.54 1.038 0.855 0.617 1.047 

σ 0.06 0.032 0.095 0.055 0.032 0.095 

FMSY 0.294 0.176 0.463 0.313 0.19 0.493 

BMSY 100173.9 68239.0 156008.2 94137.6 62397.8 144463.3 

MSY 29282.2 25005.6 35493.1 29380.3 25436.4 34652.8 

B1950/K 0.825 0.54 1.037 0.856 0.617 1.046 

B2015/K 0.377 0.264 0.549 0.377 0.265 0.523 

B2015/BMSY 1.023 0.717 1.492 1.024 0.720 1.420 

F2015/FMSY 1.080 0.625 1.650 1.078 0.678 1.611 
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The extent of stock depletion (B /BMSY) and overfishing (F / FMSY) is further illustrated in the 

form of Kobe phase plots for all four scenarios (Fig. 14). The probability of the stock being in 

the sustainable (target) area ranged from 35.8% (Scenario 4) to 65.3% (Scenario 2). In 

contrast, the risk of the stock being overfished ranged from 20.0% (Scenario 2) to 44.6% 

(Scenario 4). Scenario 3 and 4 produced slightly more pessimistic estimates about the stock 

status but no Scenario predicted more than a 50% probability of being in an overfished state. 

Comparisons of the stock status posteriors highlight the increased uncertainty associated with 

Scenario 1, which results in an increased risk of overfishing compared to Scenario 2 despite 

very similar point estimates of B/BMSY and F/FMSY.  

 

All four scenarios predicted that the majority of swordfish catches have remained under the 

surplus production since 2010 (Fig. 16). However, results from the most recent years suggest 

that the catch has already exceeded surplus production levels. Median estimates of MSY were 

similar and ranged from 29 282 to 31 476 metric tons. By adding further abundance 

information to Scenario 1, the uncertainty around the MSY estimates could be substantially 

decreased for Scenarios 2-4 (Table 4; Fig. 15).    

 

Overall, the mean stock status estimates are comparable across all 4 scenarios. However, 

considering only the short JPN.II3 (94-99) and the EU-POR (2000-2015) CPUE series for 

Scenario1 resulted in very high uncertainty about the stock status. Adding the extended 

JPN.II time series (1994-2015) alone to Scenario 2 reduced the uncertainty about the stock 

status substantially, without introducing apparent data conflict. Including the ZAF CPUE in 

Scenario 3 generally corroborated the trends and produced satisfying fitting diagnostics. 

Finally, adding the recent TAI.II (1994-2015) further corroborated the stock status, but 

appears to introduce some degree of data conflict with the JPN.II data. Taking trade-offs 

among goodness of the fits, precision and residual degrees of freedom as an indicator for 

predictive power into account, Scenario 3 appears the most plausible candidate base-case 

scenario, closely followed by Scenario 2. According to projections from Scenario 3, total 

catch levels should be kept at least below 28 000 metric tons to maintain sustainable biomass 

levels into the future (Fig .16). 
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Fig. 13. Trajectories of F/FMSY and B/BMSY for Indian Ocean swordfish (1950-2015) for the four 

scenarios (S1-S4). Grey shading indicates 95% credibility intervals. 
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Fig. 14. Kobe plots for the for JABBA scenarios (S1-S4), showing the estimated trajectories (1950-

2015) of B/BMSY and F/FMSY considered for the Indian Ocean swordfish stock assessment. Different 

grey shaded areas denote the 50%, 80% and 95% credibility interval for the final assessment years.  

The percentage of run estimates falling within each quadrant is indicated in the figure legend. 
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Figure 15. JABBA SP-phase plot showing estimated surplus production curves and catch trajectories 

as a function of biomass shown for Fox model scenarios 1-4 (S1-S4) over the period 1950-2015 for 

the Indian Ocean swordfish. The inflection point at MSY is highlighted together with the blue shaded 

area denoting its 95% credibility region. The plot background follows the color scheme of Kobe phase 

plot to facilitate interpretation, but additionally it superimposes plot regions (yellow dashes) where 

biomass can recover under a constant quota while in the red overfished state (B<BMSY, F > FMSY but 

SP > Catch). 
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Fig. 16. Projections of biomass depletion based on the Fox model candidate base case (Scenario 3) for 

Indian Ocean swordfish for various levels of future catch. The dashed line denotes BMSY and grey 

shaded areas depict the confidence regions. 
 

 

 

3.4. Remarks  

 

We have demonstrated applications of a number of JABBA core features using the 2017 

IOTC blue shark and swordfish assessments as working examples. The assessment input data 

comprised multiple, partially conflicting, fisheries-depend abundance indices over varying 

time spans, as commonly encountered in assessments of large pelagic fishes. We 

demonstrated how the inbuilt fit diagnostics can be applied to identify conflicting abundance 

indices and improve the identification of candidate base-case scenarios. The selected base-

case scenarios were used to infer the current stock status and make future projections under 

varying catch quotas.  

  

A strength of JABBA is that it allows a large number of alternative scenarios, including 

readily presentable diagnostic and output graphs, to be produced relatively quickly. All 

assessment scenarios presented here can be reproduced in less than 15 min (~ 150 seconds 

per run). This allows quick manipulation and testing to be carried out on models using 

alternative input data or model specifications. As such, JABBA is lends itself to time-

constrained RFMO assessment meetings.  

 

 

 

 



  IOTC–2017–WPM08-11 Rev_1 

21 
 

4. References 

Carvalho, F., Ahrens, R., Murie, D., Ponciano, J.M., Aires-da-silva, A., Maunder, M.N., 

Hazin, F., 2014. Incorporating specific change points in catchability in fisheries stock 

assessment models : An alternative approach applied to the blue shark (Prionace glauca) 

stock in the south Atlantic Ocean. Fish. Res. 154, 135–146. 

doi:10.1016/j.fishres.2014.01.022 

Meyer, R., Millar, C.P., 1999. BUGS in Bayesian stock assessments. Can. J. Fish. Aquat. Sci. 

56, 1078–1086. 

Pella, J.J., Tomlinson, P.K., 1969. A generalized stock production model. Inter-American 

Trop. Tuna Comm. Bull. 13, 421–458. 

Thorson, J.T., Ono, K., Munch, S.B., 2014. A Bayesian approach to identifying and 

compensating for model misspecification in population models. Ecology 95, 329–341. 

 

Appendix A  

Indian Ocean blue shark fits 

 

Fig. A1. Observed and predicted CPUE based on the fit for Scenario 1 for Indian Ocean blue shark.   
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Fig. A2. Observed and predicted CPUE based on the fit for Scenario 2 for Indian Ocean blue shark.  

Indian Ocean swordfish fits 
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Fig. A3. Observed and predicted CPUE based on the fit for Scenario 1 for Indian Ocean swordfish.  

 

 

 

Fig. A4. Observed and predicted CPUE based on the fit for Scenario 2 for Indian Ocean swordfish.  
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Fig. A5. Observed and predicted CPUE based on the fit for Scenario 3 for Indian Ocean swordfish.  

 

Fig. A6. Observed and predicted CPUE based on the fit for Scenario 4 for Indian Ocean swordfish.  


