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Executive summary 

The Indian Ocean Tuna Commission (IOTC) manages 16 tuna and tuna-like species in the Indian Ocean, 
including six neritic tuna that are predominantly harvested along the coastal areas. The six species are: 
Bullet tuna (BLT), Spanish mackerel (COM), Indo-Pacific King mackerel (GUT), Frigate tuna (FRI), Kawakawa 
tuna (KAW), and Longtail tuna (LOT). Unlike more valuable species, only limited data, primarily catch, exist 
for neritic tunas. So far it is difficult to conduct formal stock assessment for neritic tunas, and the data-
poor, catch-based methods have been used instead. In recent years, development of data-poor methods is 
an active research area and new methods frequently appear in journal publications. The Commission 
recognized a need to review available data-limited methods that are potentially applicable for neritic tunas, 
and to incorporate new information in the catch-based methods currently used for neritic tunas. 

In this report, we conduct a literature review on data-limited methods. We categorize methods into 
traditional stock assessment, area-based ERA methods, age-based methods, length-based methods, and 
catch-only (or catch-based) methods. Catch-based methods have been adopted for neritic tuna assessment 
in the past several years and are deemed the best choice for the available data in IOTC. Besides catch-based 
methods, it is possible to use area-based methods, particularly the sustainability assessment for fishing 
effect (SAFE) approach, to assess fishing mortality status for neritic tuna because SAFE is flexible to 
accommodate varying data types and there appears to have sufficient information for such an analysis for 
several neritic tunas. Length-based methods require a range of assumptions that are difficult to meet for 
widely distributed migrating species that are captured by various gear types at different life stages, such as 
neritic tunas. However, because length data is the second most abundant information held by IOTC 
Secretariat, it would be interesting to explore length-based methods and see whether they can provide 
meaningful fishery status information. 

The second section of the report aims to improve the estimation of priors needed for catch-based methods:  
the level of stock depletion and the rate of intrinsic growth. We focus on two promising catch-based 
methods: the optimized catch-only method (OCOM) and Catch-MSY (CMSY), because the two approaches 
do not assume a fixed level of stock depletion as other catch-based methods do. The OCOM adopts a 
depletion prior using recently developed BRT (boosted regression trees) model, whereas CMSY derives 
depletion prior based on the ratio between last year’s catch and the maximum catch in the history of the 
stock. The two approaches also differ in deriving prior for the intrinsic population growth rate. For the 
OCOM, population growth rate is based on empirical correlation with other life-history parameters (mainly 
the natural mortality rate), whereas for CMSY is it based on a “resilience” parameter. Because data quality 
remains a concern, integrating the two approaches leads to a third method. 

The results indicate that Method 1 (OCOM prior) produces a higher r than Method 2 (CMSY prior) for all six 
species. The high r by OCOM prior causes a low K while a low r by CMSY prior causes a high K. The joint 
effect results in a similar MSY by either methods. Without independent study to compare the two methods, 
the integrated method may have an advantage over using either one of them. 

In addition to improving prior information, we attempt to enhance the existing neritic tuna assessment in 
two areas. Limited cpue data exist for two species, Kawakawa and Longtail tuna. In OCOM’s objective 
function, we simultaneously minimize the squared error in depletion and cpue. The method is now not 
catch-only, but plus (OCOM+). Depending on the trend and contrast in cpue data, results from OCOM+ can 
differ significantly from OCOM. If cpue data are reliable, this can avoid a need for depletion prior—a new 
technique. 

The final development is a multi-stock assessment for neritic tunas. Since stock structure is unknown for 
neritic tunas, a single stock has been routinely assumed in the whole Indian Ocean for each species. Due to 
fishing intensity varies across regions, overfishing in some areas is a real concern if sub-stock exists. We 
tentatively divide Indian Ocean into four stock regions: northwest, northeast, southwest, and southeast. 
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The estimated key parameters vary among species and stocks. For example, for Longtail tuna, stock is in the 
worst status in the southeast region. 

We recommend that catch-based assessment continues to be the preferred method for neritic tuna until 
sufficient data become available for applying data-rich traditional stock assessment. Reliable cpue 
standardisation can avoid the requirement of depletion prior and improve the parameter estimation. 
Standardizing cpue for major fisheries, even just for a few recent years, can be very useful for OCOM+. 
Area-based assessment such as SAFE, and length-based analysis, should also be considered in near future 
research planning.   
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1 Introduction 

 

The Indian Ocean Tuna Commission (IOTC) manages 16 tuna and tuna-like species in the Indian Ocean with 
its primary objective the conservation and optimum utilization of the stocks for long-term sustainability. 
The scientific advice and management recommendations on the status of IOTC fish stocks are based upon 
the results of fisheries stock assessments and the analyses of the available information. Stock assessment is 
critical to enhance scientific elements in the conservation and sustainable exploitation of these valuable 
fishery resources.  

The development of quantitative, semi-quantitative, or qualitative assessment approaches depend on 
appropriate information. The high value species such as bigeye tuna, yellowfin tuna and swordfish caught in 
large volume by industrial fleets are subject to intense data collection and there is a greater amount of 
information that enables fully quantitative stock assessments to be undertaken on these species. However, 
the data collection and reporting mechanisms are limited in the artisanal and semi industrial sectors. As a 
result, the quality and quantity of data is more variable for many commercial target and bycatch species 
including neritic tuna, billfish, and shark species, and most of these species and stocks are lacking sufficient 
biological and/or exploitation information to produce a defensible quantitative stock assessment.  

Assessing the status of these data-limited stocks is a highly pertinent issue for the IOTC and has been 
discussed by many of its subsidiary bodies including the Working Party on Neritic Tunas, the Working Party 
on Billfish and the Working Party on Ecosystems and Bycatch as well as the Scientific Committee. There is 
growing need for IOTC CPCs and other fisheries stakeholders to assess these fish stocks with low levels of 
data. A catch-based stock reduction method was developed in 2013 and was applied to low information 
stocks of Kawakawa and Longtail tuna (Zhou and Sharma, 2013). Since then catch-based methods have 
become the primary technique for assessing IOTC neritic tuna species. 

In the last several years, a number of progresses have been made in the assessment of data-limit fisheries. 
Froese et al. (2017) extended the Catch-MSY method (Martell and Froese, 2013) to estimate reference 
points. Zhou et al. (2017) developed a boosted regression tree (BRT) model for estimating stock depletion 
level based on catch data alone. The optimised catch-only method (OCOM) used for IOTC neritic tunas has 
also been improved (Zhou et al., 2017b). In addition, length-based methods have been advanced in recent 
years (Froese et al., 2018; Hordyk et al., 2016; Rudd and Thorson, 2017) and these methods can potentially 
be used to complement the catch-only methods to improve the model performance. 

In view of the recent methodological development, The IOTC is proposing a project to review and improve 
available methods that have been or can potentially be applied to data-limited stocks under IOTC mandate. 
This project aims to expand the assessment options and increase the capacity to conduct assessments for 
IOTC species, as well as provide the guidance necessary to design possible harvest control rules. 

This report includes several sections. We first conduct a brief review of existing data-limited methods, 
particularly those potentially suitable for the type of data held by the IOTC secretariat. We then devote 
effort to improve the estimation of priors on the level of stock depletion and the rate of intrinsic growth by 
incorporating new information including growth parameters, and new techniques for estimating natural 
mortality and stock depletion. The improvement has been made for all six neritic tuna or tuna-like species: 
Bullet tuna (Auxis rochei), Narrow-barred Spanish mackerel (Scomberomorus commerson), Frigate tuna 
(Auxis thazard), Indo-Pacific king mackerel (Scomberomorus guttatus), Kawakawa (Euthynnus affinis), and 
Longtail tuna (Thunnus tonggol). Consequentially, two most promising catch-based methods are integrated 
to enhance the model performance, and to explore potential options of developing an amalgamated model 
that synthesises and combines different assessment approaches. Uncertainty from various sources are 
considered when making management advice. 
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Furthermore, the study investigates additional data availability, including limited cpue from certain fleets, 
and to explore the possibility of incorporating these data into catch-based models for fine-tuning the 
model.  

Finally, the study explores alternative assumptions on the stock structure, i.e., an ocean-wide single stock 
versus multiple regional stocks, and to investigate their potential impact on stock assessment results. 

This study is considered to enhance current data-limited assessment methods for Indian Ocean neritic tuna 
species as well as species with similar data. Further research and potential methodologies for the types of 
data available are recommended at the end of the report.  
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2 Review of data-limited methods  

There have be several reviews on data-limited assessment methods in recent years (Cruz et al., 2011; 
Edwards, 2015; Geromont and Butterworth, 2015; Oliveira et al., 2017). The majority of published methods 
have been covered in these reviews. Our review focuses on methods that can be potentially useful for the 
neritic tunas in the Indian Ocean.   

 

2.1  Traditional stock assessment  

Traditional stock assessment models include surplus production models (biomass dynamics models), 
statistical catch-at-age models, delay-difference models, and virtual population analysis models. Traditional 
stock assessment models require various data, including at least a time series of catch and biomass index 
(often CPUE) records. The models produce biological and management quantities that quantify biological 
status, fishing impact, and at the same time produce corresponding reference points (i.e., there is no need 
to calculate reference points separately using additional models). This cohesive approach avoids possible 
inconsistency between reference points and biological status because both refer to the same type of fish in 
terms of their age/size/sex composition.  

However, it is difficult to use traditional assessment methods for IOTC neritic tunas at this time because of 
a lack of basic information such as standardized cpue. Preliminary studies on cpue standardization exist for 
small regional fisheries, e.g., longtail tuna (Thunnus tonggol) catch rates of drift gillnet fisheries in Sultanate 
of Oman, and Kawakawa pole and line fishery in Maldives. The scales of these fisheries are very small 
compared to catch in the whole Indian Ocean, and the time series in these fisheries are short. 

 

2.2 Area-based ERA methods  

Until more data become available and their quality improves, alternative data-poor techniques are more 
appropriate for these neritic tunas. In the last two decades, an area-based ecological risk assessment 
approach has become increasingly popular. The assessment involves two separate components: (i) 
estimating fishing impact using available fishery and ecological data; (ii) deriving reference points based on 
biological and life-history traits. 

The sustainability assessment for fishing effect (SAFE) (Zhou and Griffiths, 2008; Zhou et al., 2011) is an 
area-base ERA method to estimate the annual instantaneous fishing mortality for a species in defined 
period (i.e. one year):  

𝑭 =
𝑪

𝑵̅
≈

∑ 𝒂𝒔|𝑨,𝒕𝒕

𝑨
𝒒𝒉𝒒𝝀(𝟏 − 𝑺)      (Eqn 1) 

Where C is catch, 𝑁̅ is average abundance over the period, A is the species distribution range, as|A,t is gear 
affected area by one unit of fishing effort when fishing site s is within A at time t, catchability is a 

combination of habitat-dependent encounterability qh and size- and behaviour-dependent selectivity q, 
and S is the discard survival rate or escapement rate in some gear types (e.g. gear fitted with bycatch 
reduction device). This equation assumes that fish density is constant within its distribution range, and 
encounterability and selectivity can be predefined by fish size and behaviour. It implies that fishing 
mortality is the fraction of overlap between fished area and the species distribution area within the 
jurisdiction (availability), adjusted by catchability and post-capture mortality. This simple approach has 
been referred to as base SAFE (or bSAFE, AFMA, 2017). 

For the neritic tunas in the Indian Ocean, catch data are available. If fishing effort is also available, it may be 
possible to enhance the bSAFE by estimating fish density and gear efficiency: 
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𝐹 =
𝐶

𝑁̅
=

𝐶

∑ (𝑑𝑠𝐴𝑠)𝑠
 

𝒅𝒔 =
𝟏

𝒏
∑

𝑪𝒔,𝒕

𝑸𝒂𝒔,𝒕

𝒔
𝒕          (Eqn 2) 

 

where ds is fish density at site s, Cs,t is catch in event t within site s, Q is catch efficiency, as,t is gear-affected 
area (fishing effort) in event t, and n is the total fishing events in site s within specific time. This version has 
been referred to as enhanced SAFE (or eSAFE, AFMA, 2017). These basic equations have been modified in 
various ways depending on available data. Modification can be made to each of the input variables in the 
equations.  

To conduct eSAFE, several quantities are needed: species distribution, fishing effort, area affected by major 
fishing gears, and gear efficiency.  

2.2.1 Species distribution 

Species distribution can be obtained from survey data (Zhou and Griffiths, 2008; Zhou et al., 2009a; 
Ministry for Primary Industries, 2016; Grüss et al., 2018), existing distribution maps based on habitat and 
other information (Zhou et al., 2009b; Ministry for Primary Industries, 2016), and fishery data (Zhou et al., 
2009c, 2015; Hoyle et al., 2017; Fu et al., 2018). Relative fish density is an important feature of species 
distribution. Depending on available information, homogeneous or random distribution may be assumed 
for data-poor species. If catch at location or presence-absence are available, heterogeneous density can be 
estimated and predicted through various statistical models as such GLMM, GAM, N-mixture, and 
geostatistical models (Zhou and Griffiths, 2007, 2008; Zhou et al., 2013; Hoyle et al., 2017; Fu et al., 2018; 
Grüss et al., 2018). Models that include environmental data can be used to extend predicted distributions 
into areas with insufficient fishery data (Hoyle et al 2017).  

2.2.2 Area affected by fishing 

The simplest method is to divide the management area into many small equal-sized cells and count the 
number of cells with fishing effort greater than a threshold (e.g., 3 boat-days or 1 unit of fishing effort) 
(Zhou and Griffiths, 2008; Griffiths et al., 2018). It may be preferable to calculate actual gear affected area 
from gear dimension (i.e., length of longline, gillnet, and seine, or trawl opening width) and soak time (Zhou 
et al., 2011, 2013; Ministry for Primary Industries, 2016). The total area affected by fishing is a function of 
the total fishing effort and the gear-affected area per set. 

2.2.3 Gear efficiency 

This term is sometime called catch efficiency, fishing power, or catchability. Unlike catchability parameter q 
in stock assessment model, Q is the probability of catching a particular fish in one gear setting (deployment) 
when that fish is within the gear affect area. It may be considered as the combined effect of 
encounterability and selectivity (Zhou et al., 2011, 2016a). For data-poor species, a constant value may be 
assumed and assigned to encounterability and selectivity for each gear type based on fish size and 
behaviour (e.g. low 0.33, medium 0.67, high 1.0). If sufficient set-by-set catch data are available, gear 
efficiency can be estimated by abundance and detectability (referred to as N-mixture) models (Zhou and 
Griffiths, 2007; Zhou et al., 2013, 2014; Campbell et al., 2017). 

Gear efficiency Q is directly related to catchability q in stock assessment models. When individuals are 
assumed to be randomly or evenly distributed in stock distribution area A, the relationship between these 
two quantities is q = Qa/A, where a is the average gear affected area by one unit of fishing effort. Hoyle et 
al. (2017) and Fu et al. (2018) took a different approach to derive catchability for Porbeagle shark and 
Bigeye thresher shark. They used a subset of the observer data within a subsection of the assessment area 

A where the data are believed to have good quality. They fitted a Bayesian state-space biomass dynamic 

model to an index of relative abundance in the selected sub-area. Catchability q is one of the three 
parameters (the other two parameters are carrying capacity K and intrinsic population growth rate r) in the 
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biomass dynamics model. This q is then adjusted by area and used to estimate fishing mortality. This 
approach may be compared with the N-mixture model for estimating gear efficiency.  

Conceptually, area-based method is analogous to formal stock assessment as both indicator (Fcur) and 
reference points (FRPs) are equivalent to those in formal stock assessment. This group of methods can be 
flexibly modified to suit the existing data. Limited catch-effort data are available for neritic tunas. The 
dataset IOTC-2018-WPNT08-CECoastal.csv contains some important information: fleet, gear, fishing year, 
month, fishing location (grid), fishing effort, and catch. It may be possible to estimate species distribution 
and gear efficiency from this dataset. It should be noted that area-based methods involve a series of 
assumptions regarding species distribution pattern and range, area affected by fishing gear, and gear 
efficiency. Accuracy can be improved with more data and better estimators, but uncertainly may still be 
high.  

 

2.3 Age-based methods—catch curve 

Statistical catch-at-age methods are considered the state-of-the-art in modern stock assessment. Catch 
curves represent the simplest catch-at-age methods. If catch-at-age data are available, catch curve analysis 
may be carried out to estimate total mortality Z and fishing mortality F if natural mortality M is known. 
There are alternative methods for estimating Z from catch curve data, including regression-based methods, 
the Chapman-Robson estimator, and the Heincke estimator. These methods generally require that 
vulnerability to fishing gear is constant above the age when maximum catch occurs, and that the 
population has a stable age structure. For example, a dome-shaped selectivity curve may distort the linear 
relationship between log(catch) and age. Catch curve analysis can be applied to catches taken in the same 
year so the fish are composed of cohorts born in different years. In this case catch curve analysis has to 
assume (i) a constant recruitment for these cohorts; (ii) similar survival history for these cohorts (Quinn and 
Deriso, 1999).    

In additional to potential violations of assumptions, non-random sampling, and inaccurate ageing data, 
stochastic error in the true mortality rate, recruitment, and ageing affect the accurate of the estimated 
mortality. Comparison between the Chapman-Robson and regression estimators found the Chapman-
Robson estimator to be more accurate than regression methods (Dunn et al., 2002). Another comparison 
study comparing three catch-curve methods (the Chapman–Robson, regression, and Heincke estimators) 
also showed that the Chapman-Robson estimator generally out-performed the other two methods (Smith 
et al., 2012) and was recommended, after correction for over-dispersion, for estimating total mortality. 

Age-based methods generally require constant recruitment, growth, natural mortality, selectivity, and 
fishing mortality rate, in addition to the requirement that the age composition in the sample truly 
represents those of the exploited age/size range of the stock. However, age data are expensive to obtain 
and the samples often come from selected sub-populations.  

Currently, age composition data are very limited for the neritic tuna in the Indian Ocean. Sporadic sampling 
and aging information in some areas may not represent the ocean-wide fishing impact, even if catch-curve 
can be developed.  

 

2.4 Length-based methods 

The most common length-based model is the Beverton-Holt “per-recruit” estimator (BHE) based on von 
Bertalanffy growth model with an assumption that total mortality Z is constant beyond the age of 
recruitment (Quinn and Deriso, 1999). Z is calculated as 
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𝒁 =
𝒌(𝑳𝒊𝒏𝒇−𝑳̅)

𝑳̅−𝑳𝒄
         (Eqn 3) 

where  and Linf are VB growth parameters, 𝐿̅ is the mean length in the catch, and Lc is the length at 
recruitment age. The BHE (Eqn 3) assumes steady-state conditions, deterministic vB growth function, a 
constant mortality rate of all fully recruited fish, and continuous and constant recruitment to the fishery.  

As length is a function of age, length frequency data can be converted to age under the assumption of 
deterministic growth following a vB growth model. Hence, the length converted catch curve (LCCC) method 
was developed. It has been shown that the standard LCCC overestimates Z, but by explicitly considering 
seasonal growth oscillations LCCC can produce unbiased estimates (Pauly et al., 1995).  

Recently, Hordyk et al. (2014, 2016) have developed the length-based spawning potential ratio (LB-SPR) 
mortality estimator. This is an equilibrium age-structured model that converts the predicted age 

distribution of the catch to a length distribution. Given known M/, the LB-SPR estimates the parameters 
F/M from the standardized length composition of the catch.  

Huynh et al. (2018) compared these three length-based methods used Monte Carlo simulations across a 
range of scenarios with varying mortality and life history characteristics. They showed that neither the LCCC 
nor the BHE was uniformly superior in terms of bias or root mean square error across simulations, but 
these estimators performed better than LB-SPR, which had the largest bias in most cases. Generally, if the 

ratio of natural mortality (M) to the von Bertalanffy growth rate parameter () is low, then the BHE is 

preferred, although there is likely to be high bias and low precision. If M/ is high, then the LCCC and BHE 
performed better and similarly to each other.  

The requirement of constant fishing mortality and recruitment over time has been relaxed by a recent 
developed length-based method. Rudd and Thorson (2017) extended the length-only approaches to 
account for time-varying recruitment and fishing mortality using a Length-based Integrated Mixed Effects 
(LIME) method. LIME requires a single year of length data and basic biological information and can fit to 
multiple years of length data, catch, and an abundance index if available.  

The most recent development in this area is length-based Bayesian biomass estimation method (LBB) 
(Froese et al., 2018). The method estimates asymptotic length, length at first capture, relative natural 
mortality, and relative fishing mortality using length frequency data. Standard fisheries equations can then 
be used to approximate current exploited biomass relative to unexploited biomass. 

Unfortunately, this powerful method was found to be flawed. Hordyk et al. (2019) found that the method 
to calculate equilibrium numbers-at-length is incomplete and leads to negatively biased estimates of fishing 
mortality. The method is highly sensitive to several key assumptions, including equilibrium conditions, 
approximation of population average asymptotic length by the largest observed size (Lmax), and the ratio of 

natural mortality (M) to the von Bertalanffy growth parameter (; M/). Furthermore, the method is 
essentially a per-recruit model, which does not account for the decline in average recruitment that typically 
occurs when spawning biomass is reduced below unfished levels. Therefore, their estimates of FMSY are 
equivalent to estimates of Fmax from a conventional yield-per-recruit model and the ratio of B/B0 does not 
represent the true biomass depletion. 

Similar to age-based method, length-based methods also require constant recruitment, growth, natural 
mortality, gear selectivity, fishing mortality, as well as the requirement that length frequency data in the 
sample truly represent those of the exploited size range of the stock (e.g., samples not just from selected 
sub-populations).  

Length-based methods typically assume that selectivity in fish is size-dependent, which results in 
differential fishing mortality rates across fish of the same age. But there are scenarios where this 
assumption is likely to be violated. For example, species that have an ontogenetic migration may be better 
described by age-based selectivity or a combination of age- plus size-based selectivity (Francis, 2016; 
Hordyk et al., 2016b). 

Length-based methods also assume a fixed selectivity pattern (often knife-edge, but can asymptotic). For 
migration species that is harvested by multiple gear types at varying life stage, it is unclear whether the 
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combined length frequency data from multiple fleets are sufficient to allow estimating biological 
parameters and fishing impact. 

Finally, length-based methods are based on per-recruit analysis where the final output is the spawning 

potential ratio (SPR, aka spawning stock biomass per-recruit) (Hordyk et al., 2014, 2016b; Rudd and 

Thorson, 2017). The utility of SPR has been examined recently for (Zhou et al., 2019). Spawning potential 

ratio is estimated as (Goodyear, 1993):  

𝑺𝑷𝑹 =
𝑺𝑺𝑩𝑹𝒇𝒊𝒔𝒉𝒆𝒅

𝑺𝑺𝑩𝑹𝒖𝒏𝒇𝒊𝒔𝒉𝒆𝒅
        (Eqn 4) 

Fishing mortality rate that corresponds to SPR (F%SPR) can be derived similar to yield per recruit (YPR) 

analysis. The analysis focuses on a single cohort, so does not consider population dynamics from one 

generation to the next (e.g., a stock-recruitment relationship). Assuming a constant year class, SPR can be 

obtained by following a cohort through their entire life from growth, maturation, natural and fishing 

mortality rates, to the end of their maximum life span.  

A critical question is how SPR and F%SPR link to the absolute stock size and true fishing mortality. It is worth 

to point out that although SPR refers to spawning biomass, this biomass is not the biomass of the 

population but a relative value, in terms of “per recruit”. Any arbitrarily number, such as 1 or 1000 fish, can 

be used as the initial population size to derive SPR. Fx%SPR refers to the fishing mortality that corresponds to 

the percentage of depletion in spawning biomass from an unfished level on a “per recruit” basis. Therefore, 

an estimated SPR alone does not clearly indicate stock status, i.e., whether the stock can sustain the impact 

in long term. It is necessary to define a proxy comparable with sustainability benchmark as such Fmsy.  

Extensive studies have examined the appropriate Fx%SPR proxy for Fmsy, and a range from F20% to F70% have 

been suggested. Brooks et al. (2010) demonstrated that SPRx% is a function of the stock productivity 

quantified as life time reproduction rate, which is a product of the slope at the origin of a stock-recruitment 

function and SPR when no fishing. In other words, to maintain stock biomass at certain x% of unfished level 

or of a reference point (i.e., 20%B0 or 10%Bmsy) requires varying SPRx% from species to species. It is 

inappropriate to use a common x% such as F40% for all stocks unless they have the same productivity.  

Real fisheries data may violate many assumptions required by length-based methods. In a review of data-
poor methods, Edwards (2015) recommended that pending further testing by proponents of these 
approaches, length-based methods were not considered suitable for immediate application in New 
Zealand. A review on length-based indicators and reference points for elasmobranchs (ICES, 2018) found 
that life-history parameters estimated from length were uncertain. The ICES Working Group suggested that 
trend-based metrics should be considered until the length-based methods are validated. 

Nevertheless, length data is another abundant piece of information for neritic tunas (besides catch data). It 
may be worth to explore methods that primarily use length data to derive indicators and reference points, 
as well as potentially estimating fishing mortality.  

 

2.5 Catch-only methods 

There has in recent years been an increasing interest in developing catch-only methods. These methods 
require only time series of catch data and perhaps some life history parameters, so they can be applied to 
many fisheries where catch records are available. These methods typically require information about stock 
depletion. Model performance will be affected by the depletion level chosen so methods that assume a 
common depletion have limited application. Amongst the catch-only methods, Catch-MSY (Martell and 
Froese, 2013b; Froese et al., 2017) and OCOM (Zhou et al., 2017a) attempt to come up a depletion prior 
based on catch history. Hence, they are more promising than other catch-only methods. Catch-MSY and 
OCOM produce time series of biomass, fishing mortality, and both F-based and B-based reference points 
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such as Bmsy and Fmsy. The main disadvantage of catch-only methods is their potentially inaccurate results 
for some stocks, particularly for unproductive, lightly fished, or highly depleted stocks.  

Before deciding which category of approaches may be tested for neritic tunas in the Indian Ocean, a few 
factors should be taken into consideration. It is essential to examine the data inventory, including the types 
of data available and their quality and quantity. The key assumptions required by each potential method 
should be examined. As there are several neritic tuna species, applying consistent methodology across 
multiple species could facilitate both assessment and management.    
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3 Improving the estimation of priors on the level of 
stock depletion and the rate of intrinsic growth 

Because of data-poor circumstances, catch-only methods use a simple population dynamics model. The 
biomass dynamics model, aka surplus production model, is perhaps the most simple fishery model that 
allows estimation of fundamental management quantities. For the two catch-only methods, the optimized 
catch-only method (OCOM) (Zhou et al., 2018) and Cath-MSY method (CMSY) (Froese et al., 2016), it is 
essential to construct two leading priors: the level of stock depletion and the rate of intrinsic growth.  

 

3.1 Stock depletion level 

Stock depletion level is defined as the fraction of population that has been depleted (removed) from 
unfished level: D = 1 – Bt/B0, where Bt is biomass at time t and B0 is virgin biomass often assumed to be the 
carrying capacity K. The fraction of remaining biomass may be called saturation, S = Bt/B0. Unlike some 
catch-based methods that assume constant S for all stock (e.g., 0.5 or 0.4), OCOM and Catch-MSY attempt 
to come up a prior based on catch history. In the previous assessments for IOTC’s neritic tunas (IOTC, 2015; 
IOTC Secretariat, 2015a; Martin and Sharma, 2015), OCOM assumed multiple potential saturation levels: 
0.05-0.5, 0.05-0.6, 0.05-0.7, and 0.05-0.8. Catch-MSY had two saturation levels: if Clast/Cmax > 0.5, S = 0.3-
0.7; if Clast/Cmax ≤ 0.5, S = 0.01-0.4. 

There have been some new developments in this area in recent years. Based on patterns in catch history of 
191 data-rich species, Zhou et al. (2017b) developed a boosted regression tree (BRT) model to predict stock 
saturation. This BRT model provides a basis for OCOM to construct S prior using following distributions: 

Slast ~ sNorm(mean = SBRT,last - 0.072, SD = 0.189, skewness = 0.763), when SBRT,last  ≤ 0.5   (Eqn 5) 

Slast ~ sNorm(mean = SBRT,last + 0.179, SD = 0.223, skewness = 0.904), when SBRT,last > 0.5,   

where sNorm is a skewed normal distribution, SBRT,last is the predicted value of S from the BRT model.  
Equation 6 accounts for bias in the BRT estimates by adjusting the prediction of the mean. The samples 
from the S prior are constrained within the range of [0, 1]. 

CMSY extends the original two levels of S to three broad saturation ranges (Table 1) and assumes a uniform 
distribution between S.low and S.high. The range may not cover the estimate from BRT model (Table 2). 
Agreements between the two approaches are found in two out of the six species. However, if the original 
two levels of S in the Catch-MSY method (Martell and Froese, 2013a) are adopted, four out of the six 
species would fall in the similar S ranges.   

For method 1 (OCOM), a large number of random S are generated from skewed normal distributions in Eqn 
6. For method 2 (CMSY), a large number of S are generated from uniform distribution between S.low and 
S.high. The third method is to integrate S from method 1 and method 2 by combining the equal number of 
samples from the two approaches.   
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Table 1. CMSY rule for saturation based on the ratio of last year’s catch to the maximum catch in the time 

series. 

Clast/Cmax S.low S.high 

> 0.7 0.5 0.9 

< 0.3 0.01 0.4 

>=0.3, <=0.7 0.2 0.6 

 

Table 2. Stock saturation prior from BRT and CMSY for the six neritic tunas. Two BRT models are used: 

one with 8 predictors (BRT-S8) and the other one with 38 predictors (BRT-S38).  

Species BRT-S8 BRT-S38 Mean S S.low S.high 

BLT 0.59 0.51 0.55 0.5 0.9 

COM 0.48 0.41 0.44 0.5 0.9 

FRI 0.28 0.27 0.28 0.5 0.9 

GUT 0.63 0.52 0.58 0.5 0.9 

KAW 0.43 0.40 0.41 0.5 0.9 

LOT 0.36 0.35 0.36 0.5 0.9 

 

3.2 Rate of intrinsic growth 

In the previous neritic tuna assessments, the prior for population growth rate r in the surplus production 
model was derived as r = 2 FMSY and FMSY in turn was based on an relationship with instantaneous natural 
mortality rate M (Zhou et al., 2012): FMSY = 0.87M for teleosts. Natural mortality was sourced from 
literature available at that time (IOTC, 2015; IOTC Secretariat, 2015a; Martin and Sharma, 2015). Two 
recent studies may help to improve the prior on the rate of intrinsic growth.    

Using r estimated from the Schaefer surplus production model for 189 fish and invertebrate stocks 
worldwide, (Zhou et al., 2016b) developed empirical relationships between r and other life history 
parameters (LHPs) using Bayesian hierarchical error-in-variables models that incorporate uncertainty in 
LHPs themselves. Among the various models tested, they found that r was strongly correlated with natural 

mortality (M), while other LHPs, such as the von Bertalanffy growth rate (), asymptotic length (L∞), 
maximum age (tmax), length and age at maturity (Lmat and tmat), added minor improvement to the 
relationship. The best model was r = 2.02 M for invertebrates (SD = 0.21, n = 28), r = 0.76 M for 
elasmobranchs (SD = 0.11, n = 25), and r = 1.73 M for teleosts (SD = 0.08, n = 136). The result for teleosts 
was remarkably similar to r = 2FMSY = 1.74M based on FMSY ~ M relationship. 

It is difficult to directly estimate natural mortality. The common approach is to derive M from other life-
history parameters that are relatively easier to obtain. One of most common M estimator uses von 
Bertalanffy growth parameters. However, independent studies on the growth of neritic tuna species in 
various regions across the Indian Ocean resulted in highly variable parameter estimates, possibly due to 
distinctive subpopulation and differences in sampling or analytical methods. To obtain representative 
growth parameters in the Indian Ocean at the basin-scale, a meta-analysis was carried out recently to 
collate the data from various regions and use a consistent analytical method (Zhou et al., 2017c). In that 
study a Bayesian hierarchical model (BHM) was developed, which enabled estimating growth parameters 
from very few length modes by analysing all data together. The method was applied to six neritic tuna 
species: Spanish mackerel, Longtail tuna, Frigate tuna, Kawakawa tuna, Bullet tuna, and Indo-Pacific King 
mackerel.  
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Here, we combine the estimated growth parameters from this meta-analysis with existing literature to 
increase the reliability of M estimate. We use the following equation as the primary M estimator (Then et 
al., 2015a): 

M = 𝒂𝒃𝑳𝒊𝒏𝒇
𝒄 = 𝟒. 𝟏𝟏𝟖 𝟎.𝟕𝟑𝑳𝒊𝒏𝒇

−𝟎.𝟑𝟑      (Eqn 6) 

 

Several alternative estimator based on von Bertalanffy growth parameters have be proposed (Pauly, 1980; 
Gislason et al., 2010; Charnov et al., 2012; Hamel, 2015). Equation 7 results from re-analysing all available 
data and does not require water temperature and length at maturation as in other estimators.  

Limited information on maximum age is available for some neritic tuna species. This enables using tmax-
based M estimator (Hamel, 2015; Then et al., 2015b): 

M = 𝒂𝒕𝒎𝒂𝒙
𝒃 = 𝟒. 𝟖𝟗𝟗  𝒕𝒎𝒂𝒙

−𝟎.𝟗𝟏𝟔       (Eqn 7) 

𝑴 =
𝟒.𝟑𝟕𝟒

𝒕𝒎𝒂𝒙
         (Eqn 8) 

Tables 3-3 to 3-8 provide the estimated M based on other life-history parameters, as well as M from 
literature for six neritic tuna (or tuna-like) species: Bullet tuna (BLT), Spanish mackerel (COM), Frigate tuna 
(FRI), Indo-Pacific King mackerel (GUT), Kawakawa tuna (KAW), and Longtail tuna (LOT).  

The summary M values are used to derive r priors for these species. To avoid potentially negative values 

being sampled, we use a lognormal distribution: r ~ lognormal(r, 
2

r ), where r = log(2FMSY) and 2

r = 2

M +
2

e . Measurement error and variability resulted from alternative life-history invariant equations can be 

large. This uncertainty may lead to unrealistic r values. For example, using 2

r = 0.23 can yield r >> 1 for 

some stocks. To avoid this dilemma we exclude unrealistic samples that are greater than 2 (note that r can 
be greater than 1 for highly productive species).  

In CMSY, the broad ranges of r prior is predefined by “resilience” parameter that can be obtained from 
fishbase.org for most species (Table 3). 

 

Table 3. CMSY rule for defining r range.  

Resilience r.low r.high 

High 0.6 1.5 

Medium 0.2 0.8 

Low 0.05 0.5 

Very low 0.015 0.1 

 

 

Similar to saturation prior, for Method 1 (OCOM), a large number of random r are generated from r ~ 

lognormal(r, 
2

r ) distributions. For Method 2 (CMSY), a large number of r are generated from uniform 

distribution between r.low and r.high in Table 22. The third method is to integrate r from method 1 and 
method 2 by combining the equal number of samples from the two approaches.   
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4 Catch-based methods and possible improvement 

4.1 Material and methods 

4.1.1 Available data 

The IOTC Secretariat maintains fisheries database (catch, effort, and length-frequency) for all 16 IOTC 

species, including six neritic tunas: Bullet tuna (BLT), Frigate tuna (FRI), Kawakawa (KAW), Longtail tuna 

(LOT), Indo-Pacific king mackerel (GUT) and Narrow-barred Spanish mackerel (COM). These data are 

available online at https://www.iotc.org/data-and-statistics.  

There are three catch-effort datasets downloadable in csv format: (i) IOTC-2018-WPNT08-DATA04-

CELongline.csv; (ii) IOTC-2018-WPNT08-DATA05-CESurface.csv; and (iii) IOTC-2018-WPNT08-DATA06-

CECoastal.csv). The longline dataset does not have any catch of neritic tuna. The surface dataset has only 

19 records of neritic tuna caught by purse seine. Among these files, only the coastal dataset is potentially 

useful. Because the data are composed of multiple fleets, grids, effort types, and span several years, cpue 

calculated from the catch and effort should be standardized. We may include these variables in the 

statistical models such as the generalized additive models (GAM). However, because of few records for 

each year/fleet/grid/effort_unit, the standardized cpue is quite uncertain. To examine the feasibility of 

including cpue data, we use standardized Maldives pole and line fishery data for Kawakawa (IOTC 

Secretariat, 2015b) and standardized Oman drift gillnet fishery data for Longline tuna (Al-siyabi et al., 

2014). 

The length frequency database for neritic tunas includes length samples since 1983 from 10 fleets (i.e., 

countries and gear combination) using a variety of fishing gears (a total of 15). Length frequency data were 

recorded by species, fleet, year, gear, month and 5° x 5° latitude/longitude area and the sample size in each 

stratum ranged from 1 to over 56,000 fish. This database contains valuable information for deriving 

biological and potentially fisheries parameters for neritic tuna. However, as discussed in the review section, 

length data do not contain information about stock biomass. Per-recruit using length data cannot provide 

information about the stock depletion level as claimed by some studies (Froese et al., 2018; Hordyk et al., 

2019). As such, no further exploration of using length data for deriving prior for stock status has been 

conducted. 

As its name stands, catch-only method primarily uses catch data. IOTC Secretariat provided data file “IOTC-

2018-WPNT08-DATA03-NC.xlsx” that contains catch history from 1950 to 2018 for the six neritic tunas.   

4.1.2 Catch-only methods 

Two catch-only methods, OCOM and CMSY, are considered in this study. There are some similar features as 
well as differences between the two methods. Both methods use the Graham-Schaefer surplus production 
model, as it is very simple and has been widely used: 

   𝑩𝒚+𝟏 = 𝑩𝒚 + 𝒓𝑩𝒚 (𝟏 −
𝑩𝒚

𝑲
) − 𝑪𝒚   (Eqn 9)   

where By is the biomass at the start of time step y, r is the intrinsic growth rate, K is the carrying capacity 
(equal to the unfished or initial biomass B0 for a surplus production model), and Cy is the (known) catch 
during time-step y. This model has two unknown parameters, r and K. CMSY attempts to construct priors 
for these two parameters. It defines a possible range for r based on stock productivity, called “resilience”, 

https://www.iotc.org/data-and-statistics
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and defines a range for K based on maximum catch and constructed r values. Stock saturation Slast = Blast/K 
at the end of the catch time series (i.e. 2017) is required to infer depletion. CMSY defines the range for Slast 
based on the ratio Clast/Cmax. With these three pieces of information, a large number of biomass trajectories 
are produced by Monte Carlo simulation and trajectories that satisfy the predefined conditions set by the 
three priors are retained for inferring model outputs. 

In contrast, OCOM uses two priors on r and S (not K). The prior distribution for population growth rate r is 
deduced from natural mortality M, which in turn can be estimated from other life-history parameter as 
described in the previous section. The prior distribution of saturation parameter Slast is derived from catch 
trend over the fishery history. With these two priors, K in equation 10 can be solved by using an 
optimisation algorithm. Note that the so-called “prior” in this report is essentially the range or distribution 
of possible values and it differs from prior in Bayesian models.  

Both OCOM and CMSY may have some unique advantage so it can be beneficial to integrate certain 
features from both approaches. A straightforward option is to combine the priors from both methods. 
Hence, we use both natural mortality M and resilience to derive a prior for r with equal weight, and use 
catch trend and Clast/Cmax to derive prior for Slast. In the results section below, Method 1 refers to using 
empirical relation to derive r prior and using BRT to derive S prior; Method 2 refers to using resilience to 
derive r prior and Clast/ Cmax to derive S prior; and Method 3 refers to integrating both Methods 1 and 2.  

4.1.3 Incorporating cpue data into catch-based methods 

If two or more years of cpue are available, it is possible to include them in the OCOM. Since cpuey = qBy, 
assuming catchability coefficient q is constant over year y, the mean squared error between the scaled 
cpue and scaled biomass B is: 

 𝑴𝑺𝑬𝒄𝒑𝒖𝒆 =
𝟏

𝒏
(

𝒄𝒑𝒖𝒆𝒚

𝒄𝒑𝒖𝒆̅̅ ̅̅ ̅̅ ̅
−

𝑩𝒚

𝑩̅
)

𝟐

      (Eqn 10) 

where n is the number of years with cpue data, 𝑐𝑝𝑢𝑒̅̅ ̅̅ ̅̅  is the mean cpue over those available years, and  𝐵̅ is 

the mean biomass over the same period. This MSEcpue can be minimized together with (
𝐵𝑙𝑎𝑠𝑡

𝐾
− 𝑆𝑙𝑎𝑠𝑡)

2
to 

find corresponding K for each random r and S. Depending on the quality of quantity of cpue data, there are 
multiple options for its weight w: 

(i) No cpue (w = 0): objective function =  (
𝐵𝑙𝑎𝑠𝑡

𝐾
− 𝑆𝑙𝑎𝑠𝑡)

2
 

(ii) Equal weight (w = 1): objective function =  (
𝐵𝑙𝑎𝑠𝑡

𝐾
− 𝑆𝑙𝑎𝑠𝑡)

2
+

1

𝑛
(

𝑐𝑝𝑢𝑒𝑦

𝑐𝑝𝑢𝑒̅̅ ̅̅ ̅̅ ̅
−

𝐵𝑦

𝐵̅
)

2
 

(iii) w times of weight (w = w): objective function =  (
𝐵𝑙𝑎𝑠𝑡

𝐾
− 𝑆𝑙𝑎𝑠𝑡)

2
+

𝑤

𝑛
(

𝑐𝑝𝑢𝑒𝑦

𝑐𝑝𝑢𝑒̅̅ ̅̅ ̅̅ ̅
−

𝐵𝑦

𝐵̅
)

2
 

(iv) cpue only: objective function = 
1

𝑛
(

𝑐𝑝𝑢𝑒𝑦

𝑐𝑝𝑢𝑒̅̅ ̅̅ ̅̅ ̅
−

𝐵𝑦

𝐵̅
)

2
 

 

4.1.4 Assumption of multi-stock structure 

Stock structure for the neritic tunas in the Indian Ocean is unknown. Currently, it is assumed that for each 

species there is only one stock in the whole ocean. As fishing intensity varies across the ocean, if multiple 

stocks exist, the status of some stocks may be worse than the others. To explore this concern, we 

tentatively assume four stock regions in the Indian Ocean: 1 = northwest, 2 = northeast, 3 = southwest, and 

4 = southeast (Figure 10). Catches are assigned to one of the four sub-stock regions by a combination of 

Fleet and Area codes (Table 23).  
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4.2 Results 

4.2.1 Alternative priors and methods  

We run the catch-only model for three scenarios using alternative priors and methods. The summary 

output of the key parameters are listed in Table 24 to Table 26. We further present the result from Method 

3 in Figure 1 to Figure 6. Figure 7 compares the difference in six key parameters between the three 

methods for each of the six species.  

The results indicate that Method 1 (OCOM prior) produces a higher r than Method 2 (CMSY prior) for all six 

species. In Method 1, r is based on empirical correlation with natural mortality rate. It is likely that M from 

the literature may have been overestimated in many studies as it is not uncommon to see the estimated M 

> 0.8 in Table 4 to Table 21. M = 0.8 is equivalent an annual survival rate of 45%. On the other hand, r based 

on resilience parameter may underestimate neritic tuna’s productivity.  

The high r by OCOM prior leads to a low K while a low r by CMSY prior leads to a high K. The joint effect 

results in a similar MSY by either methods. This outcome confirms the earlier finding that MSY is more 

reliable than r or K, and should be preferred as a management quantity. 

Other model outputs and indirectly derive parameters, including Slast, Ft, Bt, Bt/Bmsy, and Ft/Fmsy, can vary 

between the two methods, but the difference is typically less than r and K but greater than MSY (Figure 7). 

The general pattern shows a poorer stock status (i.e., lower Blast/Bmsy and higher Flast/Fmsy) by OCOM than 

by CMSY. Without further evidence and independent study, the results from the integrated method should 

be preferred at this stage.  

Because of a similarly increase catch trend over time for the six species, their biomass trajectories also 

show a similarly declining trend whereas the fishing mortality trajectories exhibit an increasing pattern. The 

major difference between species is the extent of decline in B (or increase in F) and their relative status in 

regards to reference points Bmsy and Fmsy. Amongst the six species, BLT and GUT appear to be in best 

situation, with median B2017/Bmsy > 1.4 and F2017/Fmsy < 0.7. For the other four species, median B2017/Bmsy and 

median F2017/Fmsy are close to 1.   

4.2.2 Effect of cpue 

Including cpue has a noticeable impact on the estimated parameters. However, the impact differs between 

the two species that have very limited cpue data. For Kawakawa, including cpue and as the weight of cupe 

increases from 1 to 2 (i.e., equal weight as S and twice as large as S), the estimated K, r, MSY, Slast, Bmsy, Blast, 

Blast/Bmsy—all increases (Table 27). As a result, Flast and Flast/Fmsy decrease. This indicates that the status of 

the stock tends to be better when cpue is taken into consideration, as the trend of cpue is not very clear or 

slightly increasing over time (Figure 8, Biomass panel). Because of a lack of contrast and clear pattern in the 

available cpue time series, option (iv), i.e., the objective function based on cpue alone, cannot be 

performed for Kawakawa. 

The situation is opposite for the Longtail tuna: all biomass based parameters decrease and fishing mortality 

F-based parameters increase (Table 28). The sharp decline of cpue over time has a substantial impact on 

estimated parameters (Figure 9). Using cpue alone in the objective function (Option iv) results in dire stock 

status with a median B2017/Bmsy = 0.4 and median F2017/Fmsy = 3.54. 
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4.2.3 Variation among assumed sub-stocks 

We carried out analysis for six species in four stock-region using three methods, resulting in a total of 72 

stock-method assemblages. To reduce the length of the report, we present the results from integrated 

Method 3 only in Table 29 to Table 34 for each species. The estimated key parameters vary among species 

and stocks. For example, for Longtail tuna, stock is in the worst status in the southeast region (median S2017 

= 0.36 and median F2017/Fmsy = 1.66). Current fishing mortality is above Fmsy in all regions except NE, thanks 

to a large decline in catch in this region in recent years (Figure 11 to Figure 14). Southwest region has the 

lowest K and MSY, reflecting the lowest catch over the entire history (Figure 15). 
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5 Discussion and recommendations    
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Table 4. Natural mortality based on von Bertalanffy growth parameters for Bullet tuna. 

Region Linf  M (Then) 

Turkey 45.1 0.34 0.533 

India 42.3 0.61 0.834 

India (south Kerala) 34 1.1 1.379 

Mediterranean (west) 44 0.7 0.910 

Atlantic (east) 41.5 0.32 0.524 

India 59.9 0.91 0.996 

Sri Lanka 103.5 0.18 0.255 

India (media) 56.2 0.36 0.517 

Sri Lanka (median) 64.6 0.18 0.298 

 

Table 5. Natural mortality from literature and based on maximum age for Bullet tuna. 

Region M tmax M (Then) M (Hamel) 

Turkey 0.6 8.4 0.70 0.52 

India 1.2    

India (south Kerala) 1.9       

 

Table 6. Overall natural mortality from Table 4 and Table 5 for Bullet tuna. 

Statistics M 

Mean 0.797 

SD 0.453 

Median 0.649 

N 14 
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Table 7. Natural mortality based on von Bertalanffy growth parameters for Spanish mackerel. 

Region Linf  M (Then) 

Saudi Arabia 138 0.38 0.400 

Oman 119 0.6 0.586 

Australia (Male) 127.5 0.25 0.302 

Australia (Female) 155 0.17 0.214 

Persian Gulf and Oman Sea 140 0.42 0.428 

Persian Gulf and Oman Sea 175.26 0.45 0.418 

Oman 226 0.28 0.272 

Oman 193.6 0.292 0.295 

Oman 138.3 0.362 0.386 

Oman 131.2 0.614 0.577 

Oman 140 0.309 0.342 

Oman 118.8 0.595 0.583 

Oman 164 0.34 0.348 

Southern India 187 0.18 0.210 

Southwest India 131 0.78 0.687 

Southeast India 178 0.38 0.368 

Djibouti, Ford Watford 136 0.21 0.261 

Gulf of Aden, Yemen 230 0.12 0.146 

Saudi Arabian Gulf 165 0.26 0.286 

Sri Lanka 146 0.37 0.385 

Persian Gulf and Oman Sea 189 0.24 0.258 

North Persain Gulf and Oman 151 0.46 0.446 

Southern Arabian Gulf (all fish) 139 0.21 0.259 

Southern Arabian Gulf (Female) 136 0.24 0.287 

Southern Arabian Gulf (Male) 126 0.22 0.276 

Persian Gulf and Oman Sea 156 0.24 0.274 

Dar es Salaam 110 0.3 0.363 

Oman 146 0.216 0.260 

Gulf of Oman (Male) 131 0.33 0.367 

Gulf of Oman (Female) 154 0.17 0.214 

Arabian Sea (Male) 119 0.65 0.621 

Arabian Sea (Female) 133 0.41 0.428 

Iran 140.1 0.57 0.535 

Sri Lanka 141.4 0.41 0.419 

Oman 140.4 0.55 0.521 

Pakistan 139.6 0.42 0.428 

Thailand 140.3 0.51 0.493 
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Table 8. Natural mortality from literature for Spanish mackerel. 

Region  M 

Iran  0.49 

Persian Gulf and Sea of Oman  0.5 

Oman  0.49 

Oman  0.38 

North Persian Gulf and Oman Sea  0.54 

Persian Gulf and Oman Sea  0.35 

Persian  0.5 

Southern Arabian Gulf  0.26 

Persian Gulf and Oman Sea  0.43 

Dar es Salaam, Tanzania  0.74 

Pangani, Tanzania  0.43 

Southwest India  0.78 

Saudi Arabian Gulf  0.36 

Sri Lanka  0.605 

Oman  0.376 

Oman  0.49 

Gulf of Oman  0.44 

Oman  0.526 

 

Table 9. Overall natural mortality from Table 7 and Table 8 for Spanish mackerel. 

Statistics M 

Mean 0.411 

SD 0.138 

Median 0.400 

n 55 
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Table 10. Natural mortality based on von Bertalanffy growth parameters for Frigate tuna. 

Region Linf  M (Then) 

Philippines 36.6 1.21 1.443 

Taiwan 48.2 0.52 0.711 

India (Veraval) 46.6 0.93 1.099 

India 57.9 1.2 1.233 

Indai (East coast) 53.8 1.04 1.138 

India (Tuticorin) Male 49 1.3 1.381 

India (Tuticorin) female 51.2 1.3 1.361 

India 63 0.49 0.623 

Indnesia 47.5 0.7 0.888 

Sri Lanka 58 0.54 0.688 

Thailand (Gulf of) 52 1.4 1.429 

Thailand (West coast) 47.2 0.8 0.981 

Philippines 47 0.73 0.919 

European Union 110.1 0.21 0.279 

India 90.5 0.24 0.329 

Sri Lanka 152.1 0.11 0.157 

Maldives 92.6 0.2 0.285 

Malaysia 70.9 0.61 0.703 

Thailand 43.8 0.63 0.844 

 

Table 11. Natural mortality from literature and based on maximum age for Frigate tuna. 

Region M 

Philippines 1.95 

Taiwan 0.91 

India (Veraval) 1.48 

 

Table 12. Overall natural mortality from Table 10 and Table 11 for Frigate tuna. 

Statistics M 

Mean 0.947 

SD 0.461 

Median 0.914 

n 22 
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Table 13. Natural mortality based on von Bertalanffy growth parameters for King mackerel. 

Region Linf  M (Then) 

India  78.5 0.34 0.444 

India (Veraval)  61.3 1.4 1.354 

India (West coast)  66.3 1.04 1.062 

India (East coast)  76.3 1.49 1.318 

India (West coast)  69 1 1.018 

India (Chennai)  73 0.72 0.786 

India (Mandapam Camp)  109.2 0.85 0.777 

India (Mangalore)  68 0.84 0.901 

India (Veraval)  69 0.8 0.865 

India (South)  127.8 0.18 0.238 

India (South)  116.3 0.18 0.245 

Bangladesh  73.5 0.6 0.687 

Bangladesh  65.1 0.6 0.715 

 

Table 14. Natural mortality from literature and based on maximum age for King mackerel. 

 

Region M tmax M (Then) M (Hamel) 

India   8.5 0.69 0.51 

India (Veraval)  1.79    

Bangladesh  1    

India (West coast)  1.41       

 

Table 15. Overall natural mortality from Table 13 and Table 14 for King mackerel. 

Statistics M 

Mean 0.879 

SD 0.410 

Median 0.826 

n 18 
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Table 16. Natural mortality based on von Bertalanffy growth parameters for Kawakawa tuna. 

Region Linf  M (Then) 

Seychelles 90 0.45 0.521 

South Africa 82 0.51 0.588 

Northwest Sumatra 64.58 1 1.041 

Persian Gulf & Sea of Oman 95.06 0.67 0.684 

Tanzania 80 0.78 0.809 

Persian Gulf & Sea of Oman 87.66 0.51 0.576 

India 81.7 0.79 0.811 

Iran 78 0.52 0.607 

Indonesia 63.53 0.63 0.747 

Pakistan 81.92 0.56 0.630 

Gulf of Thailand 79 0.96 0.945 

Java Sea, Indonesia 59.63 0.91 0.997 

Sri Lanka 63 0.61 0.731 

India 81 0.366 0.464 

India 75 0.42 0.526 

Veraval, India 72.5 0.56 0.656 

India 55.2 0.71 0.854 

Iran 76.4 0.66 0.727 

Sri Lanka 70.8 0.41 0.527 

Maldive 89.4 0.21 0.299 

Malaysia 55.3 0.81 0.939 

Oman 71.3 0.83 0.879 

Pakistan 79.4 0.73 0.773 

Thailand 62 0.45 0.589 

 

 

Table 17. Natural mortality from literature for Kawakawa tuna. 

Region M 

South Africa  0.68 

Seychelles  1.44 

Persian Gulf and Sea of Oman  0.76 

Tanzania  1.09 

Persian Gulf and Sea of Oman  0.65 

India  0.928 

Iran  0.655 

Indonesia  1.07 

India  0.93 

Java Sea, Indonesia  1.13 

India  0.76 

Veraval, India  0.94 
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Table 18. Overall natural mortality from Table 16 and Table 17 for Kawakawa tuna. 

Statistics M 

Mean 0.776 

SD 0.224 

Median 0.753 

n 36 

 

Table 19. Natural mortality based on von Bertalanffy growth parameters for Longtail tuna. 

Region Linf  M (Then) 

Australia 110 0.32 0.380 

Australia 135.4 0.23 0.279 

Persian Gulf and Sea of Oman 133.72 0.35 0.380 

India 123.5 0.51 0.514 

Papua New Guinea 122.9 0.41 0.439 

Papua New Guinea 131.8 0.4 0.421 

India 93 0.45 0.515 

Oman 133.6 0.23 0.280 

Gulf of Thailand 108 0.55 0.568 

North Persian Gulf and Oman Sea 133.8 0.35 0.380 

Inda 85 0.48 0.556 

Veraval, India 107.4 0.18 0.252 

Japan 55 1.7 1.617 

Iran 105.7 0.54 0.564 

Malaysia 93.6 0.24 0.325 

Oman 103.2 0.6 0.614 

Pakistan 103.8 0.49 0.529 

Thailand 94.4 0.23 0.314 

 

Table 20. Natural mortality from literature for Longtail tuna. 

Region M tmax M (Then) M (Hamel) 

Fishbase 0.54 9 0.65 0.49 

India  0.77    

Persian Gulf and Sea of Oman  0.44    

India  0.8    

Oman  0.43    

Persian Gulf and Sea of Oman  0.44    

Veraval, India  0.4       
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Table 21. Overall natural mortality from Table 19 and Table 20 for Longtail tuna. 

Statistics M 

Mean 0.514 

SD 0.260 

Median 0.440 

n 27 

 

 

Table 22. Prior range for intrinsic population growth rate based on resilience parameter.  

Species Resilience r.low r.high Mean 

BLT medium 0.2 0.8 0.5 

COM medium 0.2 0.8 0.5 

FRI medium 0.2 0.8 0.5 

GUT medium 0.2 0.8 0.5 

KAW medium 0.2 0.8 0.5 

LOT low 0.05 0.5 0.275 
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Table 23. Define substock by fleet and area codes. 

Flt_Area Substock   Flt_Area Substock   Flt_Area Substock 

ARE_F51 NW  GIN_F57 SE  MYS_F51 SW 

AUS_F57 SE  IDN_ IO SE  MYS_F57 NE 

BGD_F57 NE  IDN_F57 SE  NEI_ IO NE 

BHR_F51 NW  IND_F51 NW  NEI_F51 NW 

BLZ_F51 SW  IND_F57 NE  NEI_F57 NE 

BLZ_F57 SE  IRN_ IO NE  OMN_F51 NW 

CHN_F51 SW  IRN_F51 NW  PAK_F51 NW 

CHN_F57 SE  IRN_F57 NE  PHL_F51 NW 

COM_ IO SW  ISR_F51 NW  PHL_F57 NE 

COM_F51 SW  JOR_F51 NW  QAT_F51 NW 

DJI_F51 SW  JPN_F51 NW  SAU_F51 NW 

EGY_F51 NW  JPN_F57 NE  SDN_F51 NW 

ERI_F51 NW  KEN_F51 SW  SEN_F51 SW 

EUB_F51 SW  KEN_F57 SE  SEN_F57 SE 

EUD_F51 SW  KOR_F51 NW  SUN_F51 NW 

EUE_F51 SW  KOR_F57 NE  SUN_F57 NE 

EUE_F57 SW  KWT_F51 NW  SYC_F51 SW 

EUF_F51 SW  LKA_ IO NE  SYC_F57 SE 

EUF_F57 SE  LKA_F51 NW  THA_F51 NW 

EUG_F51 SW  LKA_F57 NW  THA_F57 NE 

EUG_F57 SE  MDG_F51 SW  TMP_F57 SE 

EUI_F51 SW  MDG_F57 SW  TWN_F51 NW 

EUM_F51 SW  MDV_F51 NW  TWN_F57 NE 

EUM_F57 SE  MDV_F57 NE  TZA_ IO SW 

EUP_F51 SW  MMR_F57 NE  TZA_F51 SW 

EUP_F57 SW  MOZ_F51 SW  TZA_F57 SE 

EUR_F51 SW  MOZ_F57 SE  VUT_F57 SE 

GBR_ IO NW  MUS_F51 SW  YEM_F51 NW 

GBR_F51 NW  MUS_F57 SE  ZAF_ IO SW 

GIN_F51 SW   MYS_ IO NE   ZAF_F51 SW 
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Table 24. Key output from catch-only assessment Method 1 where prior r is based on empirical 

relationship with natural mortality and prior S is based on BRT model of catch history.  

Method Species Param q0.05 q0.25 q0.5 q0.75 q0.95 

1 BLT K 24,642 36,121 55,176 91,607 300,455 

1 BLT r 0.37 0.67 0.97 1.33 1.82 

1 BLT MSY 7,797 9,643 12,030 18,398 58,453 

1 BLT Slast 0.31 0.56 0.70 0.83 0.95 

1 BLT Bmsy 12,321 18,060 27,588 45,803 150,228 

1 BLT Fmsy 0.19 0.33 0.49 0.67 0.91 

1 BLT Blast 8,987 20,928 36,948 70,515 284,221 

1 BLT Flast 0.04 0.16 0.30 0.53 1.23 

1 BLT Blast/Bmsy 0.61 1.12 1.40 1.65 1.90 

1 BLT Flast/Fmsy 0.10 0.37 0.66 1.07 2.23 

1 COM K 552,258 686,224 798,885 927,847 1,261,671 

1 COM r 0.45 0.58 0.68 0.81 1.04 

1 COM MSY 117,956 126,303 134,705 146,476 176,375 

1 COM Slast 0.11 0.30 0.41 0.53 0.68 

1 COM Bmsy 276,129 343,112 399,442 463,923 630,836 

1 COM Fmsy 0.22 0.29 0.34 0.40 0.52 

1 COM Blast 75,957 202,721 319,759 460,666 777,423 

1 COM Flast 0.20 0.35 0.50 0.79 2.10 

1 COM Blast/Bmsy 0.23 0.59 0.83 1.06 1.36 

1 COM Flast/Fmsy 0.67 1.02 1.44 2.15 5.91 

1 FRI K 194,831 213,236 234,429 265,896 330,860 

1 FRI r 1.00 1.30 1.50 1.70 1.92 

1 FRI MSY 82,489 85,790 88,276 90,823 93,734 

1 FRI Slast 0.04 0.16 0.26 0.37 0.51 

1 FRI Bmsy 97,415 106,618 117,214 132,948 165,430 

1 FRI Fmsy 0.50 0.65 0.75 0.85 0.96 

1 FRI Blast 8,998 38,278 60,867 85,424 137,908 

1 FRI Flast 0.54 0.87 1.23 1.95 8.30 

1 FRI Blast/Bmsy 0.08 0.32 0.51 0.73 1.02 

1 FRI Flast/Fmsy 0.81 1.16 1.66 2.67 11.28 
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Table 4-1 continues 

Method Species Param q0.05 q0.25 q0.5 q0.75 q0.95 

1 GUT K 102,277 131,554 167,364 250,497 734,185 

1 GUT r 0.96 1.21 1.43 1.65 1.90 

1 GUT MSY 43,602 46,706 56,108 86,811 235,922 

1 GUT Slast 0.37 0.59 0.72 0.85 0.95 

1 GUT Bmsy 51,138 65,777 83,682 125,249 367,093 

1 GUT Fmsy 0.48 0.61 0.71 0.83 0.95 

1 GUT Blast 42,529 75,808 115,836 208,010 694,249 

1 GUT Flast 0.07 0.24 0.43 0.66 1.17 

1 GUT Blast/Bmsy 0.74 1.17 1.44 1.70 1.90 

1 GUT Flast/Fmsy 0.11 0.34 0.62 0.91 1.55 

1 KAW K 336,926 398,848 457,552 532,571 659,783 

1 KAW r 0.86 1.09 1.28 1.49 1.82 

1 KAW MSY 134,448 141,476 146,330 151,030 164,664 

1 KAW Slast 0.08 0.25 0.38 0.48 0.63 

1 KAW Bmsy 168,463 199,424 228,776 266,285 329,891 

1 KAW Fmsy 0.43 0.55 0.64 0.74 0.91 

1 KAW Blast 34,785 111,029 163,266 229,857 352,059 

1 KAW Flast 0.45 0.70 0.98 1.44 4.59 

1 KAW Blast/Bmsy 0.16 0.50 0.75 0.96 1.26 

1 KAW Flast/Fmsy 0.77 1.13 1.48 2.26 6.85 

1 LOT K 370,432 544,892 707,030 931,939 1,331,952 

1 LOT r 0.30 0.50 0.69 0.98 1.55 

1 LOT MSY 95,079 113,105 123,974 134,850 148,340 

1 LOT Slast 0.06 0.20 0.32 0.42 0.56 

1 LOT Bmsy 185,216 272,446 353,515 465,970 665,976 

1 LOT Fmsy 0.15 0.25 0.35 0.49 0.77 

1 LOT Blast 43,542 120,266 201,712 317,223 576,670 

1 LOT Flast 0.23 0.43 0.67 1.12 3.10 

1 LOT Blast/Bmsy 0.12 0.40 0.64 0.84 1.12 

1 LOT Flast/Fmsy 0.86 1.27 1.75 2.95 9.32 
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Table 25. Key output from catch-only assessment Method 2 where prior r is based on resilience 

parameter and prior S is based on Clast/Cmax.  

Method Species Param q0.05 q0.25 q0.5 q0.75 q0.95 

2 BLT K 55,805 81,940 111,715 153,415 247,175 

2 BLT r 0.21 0.28 0.40 0.56 0.74 

2 BLT MSY 7,102 8,595 10,449 13,926 22,781 

2 BLT Slast 0.52 0.60 0.69 0.79 0.88 

2 BLT Bmsy 27,902 40,970 55,858 76,708 123,588 

2 BLT Fmsy 0.11 0.14 0.20 0.28 0.37 

2 BLT Blast 30,800 50,364 74,136 120,189 211,339 

2 BLT Flast 0.05 0.09 0.15 0.22 0.36 

2 BLT Blast/Bmsy 1.04 1.20 1.38 1.58 1.76 

2 BLT Flast/Fmsy 0.28 0.51 0.77 1.10 1.45 

2 COM K 925,848 1,390,775 1,933,726 2,687,893 4,664,566 

2 COM r 0.21 0.27 0.38 0.56 0.74 

2 COM MSY 127,633 147,722 174,814 244,667 369,093 

2 COM Slast 0.52 0.61 0.70 0.80 0.88 

2 COM Bmsy 462,924 695,387 966,863 1,343,946 2,332,283 

2 COM Fmsy 0.11 0.14 0.19 0.28 0.37 

2 COM Blast 547,152 875,092 1,309,389 2,066,358 3,989,107 

2 COM Flast 0.04 0.08 0.12 0.18 0.29 

2 COM Blast/Bmsy 1.04 1.21 1.40 1.61 1.76 

2 COM Flast/Fmsy 0.24 0.40 0.65 0.89 1.18 

2 FRI K 521,603 749,039 1,050,242 1,509,154 2,577,358 

2 FRI r 0.21 0.28 0.40 0.57 0.74 

2 FRI MSY 75,688 86,656 99,418 132,229 208,229 

2 FRI Slast 0.52 0.59 0.69 0.80 0.88 

2 FRI Bmsy 260,801 374,519 525,121 754,577 1,288,679 

2 FRI Fmsy 0.11 0.14 0.20 0.29 0.37 

2 FRI Blast 301,407 481,358 711,367 1,158,406 2,174,093 

2 FRI Flast 0.03 0.06 0.10 0.16 0.25 

2 FRI Blast/Bmsy 1.03 1.18 1.38 1.59 1.77 

2 FRI Flast/Fmsy 0.20 0.35 0.55 0.74 0.92 
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Table 4-2 continues 

Method Species Param q0.05 q0.25 q0.5 q0.75 q0.95 

2 GUT K 263,534 386,208 562,219 768,103 1,334,892 

2 GUT r 0.21 0.28 0.40 0.58 0.76 

2 GUT MSY 38,759 44,141 51,660 66,795 104,866 

2 GUT Slast 0.52 0.60 0.70 0.79 0.88 

2 GUT Bmsy 131,767 193,104 281,109 384,051 667,446 

2 GUT Fmsy 0.11 0.14 0.20 0.29 0.38 

2 GUT Blast 151,440 242,157 372,049 583,145 1,114,677 

2 GUT Flast 0.04 0.09 0.13 0.21 0.33 

2 GUT Blast/Bmsy 1.04 1.20 1.40 1.58 1.76 

2 GUT Flast/Fmsy 0.27 0.47 0.69 0.95 1.21 

2 KAW K 896,632 1,328,863 1,813,303 2,487,156 4,390,233 

2 KAW r 0.22 0.28 0.40 0.57 0.74 

2 KAW MSY 124,784 145,140 173,809 231,648 358,388 

2 KAW Slast 0.52 0.59 0.70 0.80 0.88 

2 KAW Bmsy 448,316 664,431 906,651 1,243,578 2,195,117 

2 KAW Fmsy 0.11 0.14 0.20 0.28 0.37 

2 KAW Blast 508,189 843,090 1,207,490 1,889,298 3,699,131 

2 KAW Flast 0.04 0.08 0.13 0.19 0.31 

2 KAW Blast/Bmsy 1.04 1.19 1.40 1.60 1.77 

2 KAW Flast/Fmsy 0.25 0.43 0.66 0.94 1.20 

2 LOT K 1,384,198 2,243,178 3,525,621 5,233,064 9,803,603 

2 LOT r 0.06 0.08 0.16 0.28 0.43 

2 LOT MSY 70,941 102,291 133,293 180,205 290,118 

2 LOT Slast 0.52 0.60 0.70 0.80 0.88 

2 LOT Bmsy 692,099 1,121,589 1,762,811 2,616,532 4,901,802 

2 LOT Fmsy 0.03 0.04 0.08 0.14 0.21 

2 LOT Blast 812,437 1,492,813 2,327,214 3,997,419 8,205,852 

2 LOT Flast 0.02 0.03 0.06 0.09 0.17 

2 LOT Blast/Bmsy 1.05 1.20 1.39 1.60 1.76 

2 LOT Flast/Fmsy 0.27 0.47 0.76 1.10 1.66 
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Table 26. Key output from catch-only assessment Method 3 where prior r and S are combined from 

Methods 1 and 2. 

Method Species Param q0.05 q0.25 q0.5 q0.75 q0.95 

3 BLT K 28,688 52,364 83,505 127,503 279,066 

3 BLT r 0.23 0.39 0.61 0.99 1.73 

3 BLT MSY 7,146 9,148 11,502 16,426 34,650 

3 BLT Slast 0.44 0.58 0.71 0.81 0.92 

3 BLT Bmsy 14,344 26,182 41,752 63,751 139,533 

3 BLT Fmsy 0.11 0.20 0.31 0.49 0.86 

3 BLT Blast 14,462 32,150 55,015 96,132 245,903 

3 BLT Flast 0.05 0.12 0.20 0.35 0.77 

3 BLT Blast/Bmsy 0.88 1.17 1.41 1.63 1.84 

3 BLT Flast/Fmsy 0.17 0.42 0.69 1.07 1.71 

3 COM K 640,338 837,121 1,118,942 1,695,954 3,067,276 

3 COM r 0.23 0.40 0.58 0.72 0.93 

3 COM MSY 109,838 128,664 148,619 189,531 344,121 

3 COM Slast 0.15 0.39 0.58 0.72 0.87 

3 COM Bmsy 320,169 418,560 559,471 847,977 1,533,638 

3 COM Fmsy 0.11 0.20 0.29 0.36 0.47 

3 COM Blast 123,430 337,316 614,346 1,134,486 2,412,601 

3 COM Flast 0.07 0.14 0.26 0.47 1.29 

3 COM Blast/Bmsy 0.30 0.78 1.15 1.43 1.73 

3 COM Flast/Fmsy 0.27 0.59 0.94 1.60 4.63 

3 FRI K 203,863 259,274 453,365 818,649 1,522,669 

3 FRI r 0.23 0.39 0.79 1.48 1.87 

3 FRI MSY 59,797 77,823 89,576 99,950 166,984 

3 FRI Slast 0.07 0.26 0.51 0.69 0.85 

3 FRI Bmsy 101,932 129,637 226,683 409,325 761,334 

3 FRI Fmsy 0.11 0.20 0.40 0.74 0.94 

3 FRI Blast 22,385 94,880 183,736 377,213 1,175,171 

3 FRI Flast 0.06 0.20 0.41 0.79 3.34 

3 FRI Blast/Bmsy 0.15 0.52 1.03 1.38 1.71 

3 FRI Flast/Fmsy 0.26 0.54 0.87 1.85 6.67 
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Table 4-3 continues 

Method Species Param q0.05 q0.25 q0.5 q0.75 q0.95 

3 GUT K 111,380 163,261 328,950 611,612 1,309,213 

3 GUT r 0.23 0.39 0.76 1.45 1.86 

3 GUT MSY 39,491 45,727 53,542 73,130 160,293 

3 GUT Slast 0.46 0.59 0.71 0.81 0.92 

3 GUT Bmsy 55,690 81,630 164,475 305,806 654,606 

3 GUT Fmsy 0.11 0.20 0.38 0.72 0.93 

3 GUT Blast 60,514 111,478 216,942 429,637 1,156,636 

3 GUT Flast 0.04 0.12 0.23 0.45 0.82 

3 GUT Blast/Bmsy 0.91 1.18 1.42 1.63 1.85 

3 GUT Flast/Fmsy 0.17 0.42 0.66 0.95 1.30 

3 KAW K 364,417 503,817 818,296 1,382,200 2,983,155 

3 KAW r 0.24 0.41 0.78 1.28 1.74 

3 KAW MSY 106,704 134,757 151,239 177,905 305,668 

3 KAW Slast 0.13 0.35 0.55 0.70 0.86 

3 KAW Bmsy 182,209 251,909 409,148 691,100 1,491,578 

3 KAW Fmsy 0.12 0.21 0.39 0.64 0.87 

3 KAW Blast 75,465 211,734 392,795 812,876 2,387,065 

3 KAW Flast 0.07 0.20 0.41 0.75 2.12 

3 KAW Blast/Bmsy 0.27 0.71 1.11 1.40 1.71 

3 KAW Flast/Fmsy 0.31 0.65 0.99 1.73 4.83 

3 LOT K 436,314 773,309 1,342,040 2,500,095 6,279,964 

3 LOT r 0.07 0.17 0.39 0.74 1.41 

3 LOT MSY 58,282 98,488 128,252 156,895 264,060 

3 LOT Slast 0.10 0.32 0.54 0.71 0.86 

3 LOT Bmsy 218,157 386,655 671,020 1,250,048 3,139,982 

3 LOT Fmsy 0.03 0.08 0.19 0.37 0.71 

3 LOT Blast 76,669 276,287 618,968 1,436,759 4,950,361 

3 LOT Flast 0.03 0.09 0.22 0.49 1.76 

3 LOT Blast/Bmsy 0.20 0.64 1.09 1.42 1.72 

3 LOT Flast/Fmsy 0.30 0.61 1.08 2.23 9.08 
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Table 27. Effect of including cpue on catch-only method for kawakawa tuna. Weight: 0 = minimizing S 

only; 1 = equal weight between S and cpue; 2 = cpue has twice weight. 

 

Method Species Weight Param q0.05 q0.25 q0.5 q0.75 q0.95 

3 KAW 0 K 373,570 508,032 825,950 1,384,251 2,832,359 

3 KAW 0 r 0.23 0.42 0.78 1.27 1.68 

3 KAW 0 MSY 104,800 136,035 149,976 177,542 322,364 

3 KAW 0 Slast 0.26 0.42 0.55 0.69 0.87 

3 KAW 0 Bmsy 186,785 254,016 412,975 692,126 1,416,180 

3 KAW 0 Fmsy 0.12 0.21 0.39 0.64 0.84 

3 KAW 0 Blast 175,675 235,580 405,444 831,118 2,257,139 

3 KAW 0 Flast 0.07 0.19 0.39 0.68 0.91 

3 KAW 0 Blast/Bmsy 0.53 0.85 1.11 1.39 1.73 

3 KAW 0 Flast/Fmsy 0.29 0.65 0.99 1.37 2.75 

3 KAW 1 K 377,632 517,516 863,126 1,549,531 3,213,539 

3 KAW 1 r 0.24 0.40 0.80 1.29 1.69 

3 KAW 1 MSY 105,675 136,926 153,173 195,908 368,926 

3 KAW 1 Slast 0.28 0.44 0.59 0.74 0.89 

3 KAW 1 Bmsy 188,816 258,758 431,563 774,766 1,606,769 

3 KAW 1 Fmsy 0.12 0.20 0.40 0.64 0.85 

3 KAW 1 Blast 175,952 249,597 460,334 972,197 2,679,646 

3 KAW 1 Flast 0.06 0.16 0.35 0.64 0.91 

3 KAW 1 Blast/Bmsy 0.55 0.88 1.18 1.48 1.77 

3 KAW 1 Flast/Fmsy 0.25 0.55 0.91 1.32 2.61 

3 KAW 2 K 386,571 555,494 932,211 1,615,605 3,242,200 

3 KAW 2 r 0.23 0.40 0.78 1.28 1.71 

3 KAW 2 MSY 104,669 137,276 155,337 205,061 403,444 

3 KAW 2 Slast 0.28 0.46 0.61 0.76 0.90 

3 KAW 2 Bmsy 193,286 277,747 466,106 807,803 1,621,100 

3 KAW 2 Fmsy 0.11 0.20 0.39 0.64 0.85 

3 KAW 2 Blast 176,346 276,121 514,072 1,015,604 2,540,988 

3 KAW 2 Flast 0.06 0.16 0.31 0.58 0.91 

3 KAW 2 Blast/Bmsy 0.55 0.91 1.22 1.51 1.79 

3 KAW 2 Flast/Fmsy 0.22 0.52 0.85 1.26 2.63 
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Table 28. Effect of including cpue on catch-only method for Longtail tuna. Weight: 0 = minimizing S only; 

1 = equal weight between S and cpue; 2 = cpue has twice weight; 99 = minimizing cpue only. 

Method Species Weight Param q0.05 q0.25 q0.5 q0.75 q0.95 

3 LOT 0 K 443,091 783,772 1,413,188 2,505,042 5,454,827 

3 LOT 0 r 0.06 0.16 0.39 0.74 1.38 

3 LOT 0 MSY 52,485 96,928 128,680 159,326 267,808 

3 LOT 0 Slast 0.19 0.35 0.55 0.71 0.86 

3 LOT 0 Bmsy 221,546 391,886 706,594 1,252,521 2,727,413 

3 LOT 0 Fmsy 0.03 0.08 0.20 0.37 0.69 

3 LOT 0 Blast 169,316 284,446 627,805 1,438,432 4,280,832 

3 LOT 0 Flast 0.03 0.09 0.22 0.47 0.80 

3 LOT 0 Blast/Bmsy 0.37 0.69 1.09 1.43 1.72 

3 LOT 0 Flast/Fmsy 0.29 0.60 1.06 1.97 5.84 

3 LOT 1 K 424,629 715,600 1,241,571 2,287,100 4,484,043 

3 LOT 1 r 0.07 0.16 0.39 0.77 1.42 

3 LOT 1 MSY 52,232 92,307 122,767 146,632 204,006 

3 LOT 1 Slast 0.17 0.32 0.50 0.65 0.80 

3 LOT 1 Bmsy 212,315 357,800 620,785 1,143,550 2,242,021 

3 LOT 1 Fmsy 0.03 0.08 0.19 0.38 0.71 

3 LOT 1 Blast 164,373 253,586 495,950 1,087,028 3,212,163 

3 LOT 1 Flast 0.04 0.12 0.27 0.53 0.82 

3 LOT 1 Blast/Bmsy 0.33 0.63 0.99 1.29 1.60 

3 LOT 1 Flast/Fmsy 0.42 0.74 1.25 2.16 6.26 

3 LOT 2 K 397,005 698,661 1,235,102 2,140,451 4,015,504 

3 LOT 2 r 0.06 0.16 0.38 0.78 1.48 

3 LOT 2 MSY 47,132 87,148 120,163 141,313 172,574 

3 LOT 2 Slast 0.14 0.30 0.46 0.60 0.74 

3 LOT 2 Bmsy 198,502 349,331 617,551 1,070,226 2,007,752 

3 LOT 2 Fmsy 0.03 0.08 0.19 0.39 0.74 

3 LOT 2 Blast 162,813 243,524 448,721 952,600 2,562,343 

3 LOT 2 Flast 0.05 0.14 0.30 0.55 0.83 

3 LOT 2 Blast/Bmsy 0.29 0.60 0.93 1.21 1.48 

3 LOT 2 Flast/Fmsy 0.54 0.83 1.35 2.30 8.63 
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Table 28 continues. 

Method Species Weight Param q0.05 q0.25 q0.5 q0.75 q0.95 

3 LOT 99 K 391,373 665,176 1,048,441 1,748,143 2,420,696 

3 LOT 99 r 0.06 0.14 0.37 0.72 1.44 

3 LOT 99 MSY 37,210 63,313 95,705 119,899 140,426 

3 LOT 99 Slast 0.11 0.14 0.20 0.27 0.36 

3 LOT 99 Bmsy 195,687 332,588 524,221 874,072 1,210,348 

3 LOT 99 Fmsy 0.03 0.07 0.18 0.36 0.72 

3 LOT 99 Blast 148283.57 178713.94 208928.50 240016.07 255939.69 

3 LOT 99 Flast 0.53 0.56 0.65 0.76 0.91 

3 LOT 99 Blast/Bmsy 0.21 0.27 0.40 0.53 0.72 

3 LOT 99 Flast/Fmsy 1.34 2.12 3.54 7.77 17.16 
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Table 29. Estimated key parameters for BLT in four assumed sub-stock regions.  

Method Stock Param q0.05 q0.25 q0.5 q0.75 q0.95 

3 BLT_NE K 10,713 17,898 25,603 37,608 72,998 

3 BLT_NE r 0.23 0.39 0.60 0.97 1.65 

3 BLT_NE MSY 2,325 3,214 3,969 4,827 8,529 

3 BLT_NE Slast 0.24 0.37 0.55 0.71 0.86 

3 BLT_NE Bmsy 5,356 8,949 12,801 18,804 36,499 

3 BLT_NE Fmsy 0.11 0.19 0.30 0.48 0.82 

3 BLT_NE Blast 4,458 6,567 12,573 23,775 59,010 

3 BLT_NE Flast 0.07 0.16 0.31 0.59 0.87 

3 BLT_NE Blast/Bmsy 0.48 0.75 1.10 1.43 1.73 

3 BLT_NE Flast/Fmsy 0.26 0.57 0.95 1.53 3.23 

3 BLT_NW K 11,172 15,635 21,755 31,462 59,700 

3 BLT_NW r 0.23 0.36 0.58 0.99 1.72 

3 BLT_NW MSY 1,888 2,466 3,223 4,496 7,887 

3 BLT_NW Slast 0.34 0.47 0.55 0.69 0.85 

3 BLT_NW Bmsy 5,586 7,818 10,877 15,731 29,850 

3 BLT_NW Fmsy 0.12 0.18 0.29 0.49 0.86 

3 BLT_NW Blast 6,182 7,780 9,297 20,083 50,345 

3 BLT_NW Flast 0.10 0.26 0.56 0.67 0.84 

3 BLT_NW Blast/Bmsy 0.67 0.93 1.10 1.39 1.71 

3 BLT_NW Flast/Fmsy 0.38 0.90 1.40 2.23 4.09 

3 BLT_SE K 5,289 8,092 12,926 18,430 26,575 

3 BLT_SE r 0.23 0.37 0.59 1.04 1.69 

3 BLT_SE MSY 1,409 1,737 1,956 2,134 2,314 

3 BLT_SE Slast 0.21 0.31 0.42 0.52 0.63 

3 BLT_SE Bmsy 2,644 4,046 6,463 9,215 13,288 

3 BLT_SE Fmsy 0.11 0.19 0.29 0.52 0.84 

3 BLT_SE Blast 2,130 2,944 4,634 7,672 14,330 

3 BLT_SE Flast 0.13 0.24 0.39 0.62 0.86 

3 BLT_SE Blast/Bmsy 0.43 0.61 0.84 1.04 1.26 

3 BLT_SE Flast/Fmsy 0.63 0.87 1.16 1.66 2.72 

3 BLT_SW K 517 1,003 1,607 2,616 6,582 

3 BLT_SW r 0.24 0.38 0.61 1.02 1.68 

3 BLT_SW MSY 151 189 224 311 724 

3 BLT_SW Slast 0.45 0.59 0.71 0.82 0.93 

3 BLT_SW Bmsy 258 502 803 1,308 3,291 

3 BLT_SW Fmsy 0.12 0.19 0.30 0.51 0.84 

3 BLT_SW Blast 291 617 1,074 2,003 6,029 

3 BLT_SW Flast 0.03 0.09 0.18 0.31 0.65 

3 BLT_SW Blast/Bmsy 0.91 1.18 1.42 1.64 1.86 

3 BLT_SW Flast/Fmsy 0.14 0.37 0.59 0.86 1.31 
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Table 30. Estimated key parameters for COM in four assumed sub-stock regions.  

Method Stock Param q0.05 q0.25 q0.5 q0.75 q0.95 

3 COM_NE K 120,057 153,163 205,624 302,399 576,931 

3 COM_NE r 0.23 0.39 0.58 0.72 0.91 

3 COM_NE MSY 19,249 23,566 25,867 34,060 63,656 

3 COM_NE Slast 0.20 0.28 0.39 0.69 0.86 

3 COM_NE Bmsy 60,028 76,582 102,812 151,200 288,466 

3 COM_NE Fmsy 0.11 0.20 0.29 0.36 0.46 

3 COM_NE Blast 39,216 43,545 79,159 186,519 460,855 

3 COM_NE Flast 0.07 0.17 0.39 0.71 0.79 

3 COM_NE Blast/Bmsy 0.39 0.56 0.77 1.38 1.73 

3 COM_NE Flast/Fmsy 0.28 0.65 1.54 2.34 3.95 

3 COM_NW K 293,594 393,978 527,096 805,787 1,413,904 

3 COM_NW r 0.23 0.41 0.57 0.73 0.99 

3 COM_NW MSY 50,757 59,787 68,102 89,364 162,899 

3 COM_NW Slast 0.23 0.33 0.52 0.69 0.86 

3 COM_NW Bmsy 146,797 196,989 263,548 402,893 706,952 

3 COM_NW Fmsy 0.11 0.20 0.29 0.36 0.50 

3 COM_NW Blast 109,208 124,295 238,746 497,554 1,157,723 

3 COM_NW Flast 0.07 0.17 0.35 0.68 0.78 

3 COM_NW Blast/Bmsy 0.45 0.66 1.04 1.38 1.71 

3 COM_NW Flast/Fmsy 0.30 0.68 1.21 2.14 3.63 

3 COM_SE K 178,033 228,634 309,262 477,998 1,264,922 

3 COM_SE r 0.24 0.39 0.57 0.73 0.94 

3 COM_SE MSY 27,904 34,230 38,671 55,502 141,371 

3 COM_SE Slast 0.24 0.38 0.54 0.77 0.93 

3 COM_SE Bmsy 89,017 114,317 154,631 238,999 632,461 

3 COM_SE Fmsy 0.12 0.19 0.28 0.36 0.47 

3 COM_SE Blast 50,373 91,488 154,724 325,526 1,161,763 

3 COM_SE Flast 0.03 0.10 0.22 0.37 0.67 

3 COM_SE Blast/Bmsy 0.48 0.76 1.08 1.55 1.86 

3 COM_SE Flast/Fmsy 0.13 0.40 0.85 1.34 2.29 

3 COM_SW K 34,175 44,077 55,993 81,210 140,385 

3 COM_SW r 0.24 0.42 0.59 0.74 0.94 

3 COM_SW MSY 5,496 6,725 7,614 9,452 17,307 

3 COM_SW Slast 0.30 0.41 0.55 0.69 0.86 

3 COM_SW Bmsy 17,088 22,039 27,996 40,605 70,193 

3 COM_SW Fmsy 0.12 0.21 0.29 0.37 0.47 

3 COM_SW Blast 13,389 17,711 29,598 52,278 114,111 

3 COM_SW Flast 0.09 0.19 0.34 0.57 0.75 

3 COM_SW Blast/Bmsy 0.59 0.82 1.10 1.38 1.71 

3 COM_SW Flast/Fmsy 0.34 0.77 1.21 1.79 2.99 
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Table 31. Estimated key parameters for FRI in four assumed sub-stock regions.  

Method Stock Param q0.05 q0.25 q0.5 q0.75 q0.95 

3 FRI_NE K 31,892 39,432 77,567 145,447 266,464 

3 FRI_NE r 0.23 0.39 0.76 1.49 1.85 

3 FRI_NE MSY 11,266 12,926 14,019 14,564 32,087 

3 FRI_NE Slast 0.25 0.45 0.60 0.79 0.91 

3 FRI_NE Bmsy 15,946 19,716 38,783 72,724 133,232 

3 FRI_NE Fmsy 0.11 0.20 0.38 0.75 0.92 

3 FRI_NE Blast 20,359 25,637 33,592 70,667 216,429 

3 FRI_NE Flast 0.03 0.09 0.18 0.24 0.30 

3 FRI_NE Blast/Bmsy 0.51 0.90 1.20 1.58 1.82 

3 FRI_NE Flast/Fmsy 0.10 0.26 0.37 0.53 1.00 

3 FRI_NW K 42,499 56,015 103,791 183,458 330,969 

3 FRI_NW r 0.23 0.40 0.80 1.48 1.85 

3 FRI_NW MSY 13,909 17,197 18,932 22,176 40,546 

3 FRI_NW Slast 0.23 0.41 0.54 0.69 0.86 

3 FRI_NW Bmsy 21,249 28,008 51,895 91,729 165,484 

3 FRI_NW Fmsy 0.12 0.20 0.40 0.74 0.92 

3 FRI_NW Blast 20,355 26,858 47,855 97,905 259,551 

3 FRI_NW Flast 0.08 0.20 0.41 0.73 0.96 

3 FRI_NW Blast/Bmsy 0.47 0.83 1.09 1.39 1.73 

3 FRI_NW Flast/Fmsy 0.28 0.63 0.97 1.32 2.79 

3 FRI_SE K 129,931 163,050 309,509 564,709 1,646,096 

3 FRI_SE r 0.23 0.40 0.87 1.50 1.87 

3 FRI_SE MSY 39,468 51,485 57,701 68,354 200,594 

3 FRI_SE Slast 0.27 0.42 0.56 0.74 0.94 

3 FRI_SE Bmsy 64,965 81,525 154,754 282,355 823,048 

3 FRI_SE Fmsy 0.12 0.20 0.44 0.75 0.94 

3 FRI_SE Blast 56,085 80,228 144,200 326,416 1,515,506 

3 FRI_SE Flast 0.03 0.15 0.33 0.59 0.84 

3 FRI_SE Blast/Bmsy 0.54 0.84 1.11 1.49 1.88 

3 FRI_SE Flast/Fmsy 0.13 0.46 0.76 1.14 2.10 

3 FRI_SW K 4,428 4,736 6,785 10,240 15,692 

3 FRI_SW r 0.24 0.43 0.87 1.46 1.84 

3 FRI_SW MSY 880 1,088 1,484 1,787 2,082 

3 FRI_SW Slast 0.29 0.39 0.45 0.54 0.63 

3 FRI_SW Bmsy 2,214 2,368 3,393 5,120 7,846 

3 FRI_SW Fmsy 0.12 0.22 0.44 0.73 0.92 

3 FRI_SW Blast 1,921 2,332 2,782 4,218 8,013 

3 FRI_SW Flast 0.22 0.41 0.63 0.75 0.91 

3 FRI_SW Blast/Bmsy 0.57 0.78 0.91 1.08 1.26 

3 FRI_SW Flast/Fmsy 0.68 0.96 1.32 1.98 3.39 
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Table 32. Estimated key parameters for GUT in four assumed sub-stock regions.  

Method Stock Param q0.05 q0.25 q0.5 q0.75 q0.95 

3 GUT_NE K 29,834 42,472 83,915 160,525 376,576 

3 GUT_NE r 0.23 0.42 0.80 1.46 1.82 

3 GUT_NE MSY 11,069 12,894 14,461 20,104 39,426 

3 GUT_NE Slast 0.44 0.59 0.69 0.81 0.92 

3 GUT_NE Bmsy 14,917 21,236 41,957 80,263 188,288 

3 GUT_NE Fmsy 0.11 0.21 0.40 0.73 0.91 

3 GUT_NE Blast 16,298 27,844 54,938 111,996 319,447 

3 GUT_NE Flast 0.04 0.11 0.23 0.45 0.76 

3 GUT_NE Blast/Bmsy 0.89 1.17 1.39 1.62 1.83 

3 GUT_NE Flast/Fmsy 0.17 0.38 0.62 0.85 1.22 

3 GUT_NW K 51,494 60,658 111,962 204,212 356,698 

3 GUT_NW r 0.22 0.38 0.79 1.49 1.82 

3 GUT_NW MSY 15,260 18,231 21,150 23,983 42,218 

3 GUT_NW Slast 0.26 0.51 0.60 0.69 0.86 

3 GUT_NW Bmsy 25,747 30,329 55,981 102,106 178,349 

3 GUT_NW Fmsy 0.11 0.19 0.40 0.74 0.91 

3 GUT_NW Blast 32,609 34,067 49,051 107,092 277,425 

3 GUT_NW Flast 0.10 0.25 0.55 0.79 0.82 

3 GUT_NW Blast/Bmsy 0.53 1.02 1.20 1.38 1.71 

3 GUT_NW Flast/Fmsy 0.37 0.82 1.06 1.45 3.25 

3 GUT_SE K 29,049 37,333 67,298 124,487 293,264 

3 GUT_SE r 0.23 0.39 0.77 1.45 1.80 

3 GUT_SE MSY 8,325 10,957 12,453 14,248 34,763 

3 GUT_SE Slast 0.27 0.40 0.54 0.71 0.91 

3 GUT_SE Bmsy 14,524 18,667 33,649 62,243 146,632 

3 GUT_SE Fmsy 0.11 0.20 0.38 0.72 0.90 

3 GUT_SE Blast 12,202 17,532 31,836 63,093 263,923 

3 GUT_SE Flast 0.04 0.17 0.33 0.59 0.85 

3 GUT_SE Blast/Bmsy 0.53 0.81 1.07 1.42 1.82 

3 GUT_SE Flast/Fmsy 0.16 0.52 0.81 1.20 2.12 

3 GUT_SW K 756 803 1,318 2,155 7,842 

3 GUT_SW r 0.24 0.38 0.79 1.46 1.84 

3 GUT_SW MSY 142 191 267 338 996 

3 GUT_SW Slast 0.26 0.50 0.79 0.84 0.95 

3 GUT_SW Bmsy 378 401 659 1,077 3,921 

3 GUT_SW Fmsy 0.12 0.19 0.39 0.73 0.92 

3 GUT_SW Blast 373 627 637 1,267 7,278 

3 GUT_SW Flast 0.03 0.16 0.31 0.32 0.53 

3 GUT_SW Blast/Bmsy 0.53 0.99 1.58 1.68 1.91 

3 GUT_SW Flast/Fmsy 0.10 0.35 0.47 1.08 2.27 
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Table 33. Estimated key parameters for KAW in four assumed sub-stock regions.  

Method Stock Param q0.05 q0.25 q0.5 q0.75 q0.95 

3 KAW_NE K 69,985 98,952 165,024 306,950 605,554 

3 KAW_NE r 0.24 0.41 0.79 1.27 1.78 

3 KAW_NE MSY 23,652 28,103 30,111 35,317 59,155 

3 KAW_NE Slast 0.30 0.45 0.58 0.71 0.86 

3 KAW_NE Bmsy 34,993 49,476 82,512 153,475 302,777 

3 KAW_NE Fmsy 0.12 0.20 0.39 0.64 0.89 

3 KAW_NE Blast 33,328 50,638 86,390 172,596 477,500 

3 KAW_NE Flast 0.06 0.18 0.35 0.60 0.92 

3 KAW_NE Blast/Bmsy 0.60 0.91 1.15 1.41 1.71 

3 KAW_NE Flast/Fmsy 0.30 0.62 0.89 1.21 2.14 

3 KAW_NW K 203,846 270,199 435,677 702,878 1,425,880 

3 KAW_NW r 0.23 0.41 0.79 1.29 1.70 

3 KAW_NW MSY 48,102 66,258 78,894 96,600 175,811 

3 KAW_NW Slast 0.23 0.38 0.53 0.70 0.86 

3 KAW_NW Bmsy 101,923 135,100 217,839 351,439 712,940 

3 KAW_NW Fmsy 0.11 0.21 0.40 0.65 0.85 

3 KAW_NW Blast 107,152 124,354 162,143 370,633 1,110,055 

3 KAW_NW Flast 0.08 0.25 0.58 0.75 0.88 

3 KAW_NW Blast/Bmsy 0.46 0.77 1.06 1.40 1.72 

3 KAW_NW Flast/Fmsy 0.31 0.70 1.14 1.83 4.21 

3 KAW_SE K 99,548 133,297 226,926 391,463 833,576 

3 KAW_SE r 0.24 0.41 0.75 1.27 1.67 

3 KAW_SE MSY 27,722 34,731 39,404 44,525 98,889 

3 KAW_SE Slast 0.26 0.39 0.52 0.69 0.90 

3 KAW_SE Bmsy 49,774 66,649 113,463 195,732 416,788 

3 KAW_SE Fmsy 0.12 0.21 0.38 0.64 0.84 

3 KAW_SE Blast 38,541 61,984 106,397 209,019 691,869 

3 KAW_SE Flast 0.05 0.16 0.31 0.54 0.86 

3 KAW_SE Blast/Bmsy 0.52 0.78 1.05 1.38 1.80 

3 KAW_SE Flast/Fmsy 0.19 0.54 0.84 1.23 2.10 

3 KAW_SW K 5,869 7,803 13,038 23,538 44,949 

3 KAW_SW r 0.23 0.40 0.77 1.29 1.70 

3 KAW_SW MSY 1,827 2,151 2,340 2,799 4,454 

3 KAW_SW Slast 0.26 0.44 0.59 0.72 0.85 

3 KAW_SW Bmsy 2,935 3,901 6,519 11,769 22,475 

3 KAW_SW Fmsy 0.12 0.20 0.39 0.64 0.85 

3 KAW_SW Blast 2,455 3,915 6,829 13,499 35,071 

3 KAW_SW Flast 0.06 0.16 0.32 0.56 0.90 

3 KAW_SW Blast/Bmsy 0.51 0.89 1.18 1.44 1.70 

3 KAW_SW Flast/Fmsy 0.29 0.55 0.81 1.17 2.30 



52   |  Improving data limited methods for assessing Indian Ocean neritic tuna species 

Table 34. Estimated key parameters for LOT in four assumed sub-stock regions.  

Method Stock Param q0.05 q0.25 q0.5 q0.75 q0.95 

3 LOT_NE K 53,786 94,022 170,574 334,558 894,260 

3 LOT_NE r 0.06 0.16 0.40 0.76 1.39 

3 LOT_NE MSY 6,585 11,944 15,693 18,535 46,655 

3 LOT_NE Slast 0.08 0.23 0.49 0.75 0.93 

3 LOT_NE Bmsy 26,893 47,011 85,287 167,279 447,130 

3 LOT_NE Fmsy 0.03 0.08 0.20 0.38 0.69 

3 LOT_NE Blast 10,016 30,112 58,393 155,062 764,960 

3 LOT_NE Flast 0.01 0.04 0.11 0.21 0.63 

3 LOT_NE Blast/Bmsy 0.15 0.46 0.97 1.50 1.86 

3 LOT_NE Flast/Fmsy 0.07 0.23 0.49 1.25 3.85 

3 LOT_NW K 315,096 572,722 1,011,592 1,836,756 3,645,319 

3 LOT_NW r 0.06 0.15 0.38 0.73 1.39 

3 LOT_NW MSY 38,122 66,353 92,105 113,302 193,049 

3 LOT_NW Slast 0.21 0.35 0.54 0.70 0.86 

3 LOT_NW Bmsy 157,548 286,361 505,796 918,378 1,822,660 

3 LOT_NW Fmsy 0.03 0.08 0.19 0.36 0.70 

3 LOT_NW Blast 130,453 201,428 478,956 1,037,326 2,905,839 

3 LOT_NW Flast 0.04 0.10 0.23 0.54 0.83 

3 LOT_NW Blast/Bmsy 0.43 0.70 1.08 1.40 1.72 

3 LOT_NW Flast/Fmsy 0.33 0.70 1.20 2.18 6.07 

3 LOT_SE K 66,025 112,669 177,276 337,658 524,252 

3 LOT_SE r 0.06 0.15 0.41 0.74 1.38 

3 LOT_SE MSY 8,034 13,454 18,312 21,378 23,616 

3 LOT_SE Slast 0.17 0.26 0.36 0.45 0.57 

3 LOT_SE Bmsy 33,012 56,335 88,638 168,829 262,126 

3 LOT_SE Fmsy 0.03 0.08 0.20 0.37 0.69 

3 LOT_SE Blast 23,078 33,391 58,106 112,357 243,643 

3 LOT_SE Flast 0.08 0.17 0.34 0.59 0.85 

3 LOT_SE Blast/Bmsy 0.34 0.53 0.71 0.91 1.14 

3 LOT_SE Flast/Fmsy 0.76 1.14 1.66 2.54 5.35 

3 LOT_SW K 2,360 4,597 8,892 19,532 54,293 

3 LOT_SW r 0.06 0.18 0.42 0.80 1.50 

3 LOT_SW MSY 495 683 762 1,023 2,626 

3 LOT_SW Slast 0.25 0.40 0.54 0.74 0.91 

3 LOT_SW Bmsy 1,180 2,299 4,446 9,766 27,146 

3 LOT_SW Fmsy 0.03 0.09 0.21 0.40 0.75 

3 LOT_SW Blast 1,120 2,073 4,311 10,310 45,028 

3 LOT_SW Flast 0.02 0.08 0.20 0.41 0.77 

3 LOT_SW Blast/Bmsy 0.51 0.80 1.08 1.48 1.83 

3 LOT_SW Flast/Fmsy 0.18 0.56 1.10 1.63 2.92 
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Figure 1. Result from the integrated catch-only method for LOT.  
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Figure 2. Result from the integrated catch-only method for KAW.  
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Figure 3. Result from the integrated catch-only method for GUT.  
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Figure 4. Result from the integrated catch-only method for FRI.  
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Figure 5. Result from the integrated catch-only method for COM.  



58   |  Improving data limited methods for assessing Indian Ocean neritic tuna species 

 

 

 

Figure 6. Result from the integrated catch-only method for BLT.  
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Figure 7. Comparison of two catch-based methods for six neritic tunas. Prior r and S in Method 1 is based 

on OCOM and in Method 2 is based on CMSY rules. The green bars are integrated from Methods 1 and 2. 

Error bars are 25 to 75 percentiles.  
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Figure 8. Objective function minimizes both S and cpue with weight of cpue twice of S using Method 3 for 

Kawakawa tuna. 
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Figure 9. Objective function minimizes cpue only using Method 3 for Longtail tuna. 
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Figure 10.  Hypothetical sub-stock regions in the Indian Ocean for the six neritic tuna species. 
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Figure 11. Result from the integrated catch-only method for LOT in the NE region.  
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Figure 12. Result from the integrated catch-only method for LOT in the NW region.  
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Figure 13. Result from the integrated catch-only method for LOT in the SE region. 
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Figure 14. Result from the integrated catch-only method for LOT in the SW region. 
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Figure 15. Comparison of sub-stocks for six neritic tunas using Method 3. Error bars are 25 to 75 

percentiles.  
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