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SUMMARY 

 

In the present study, the shortfin mako shark catch and effort data from the logbook data of Taiwanese 

large longline fishing vessels operating in the Indian Ocean from 2005-2018 were analyzed. Based on 

the effort distribution, four areas, namely, A (north of 10ºS, east to 70ºE), B (north of 10ºS, 

70ºE-120ºE), C (south of 10ºS, 20ºE-60ºE), D (south of 10ºS, 60ºE-120ºE) were categorized. To cope 

with the large percentage of zero shark catch, the catch per unit effort (CPUE) of shortfin mako shark, 

as the number of fish caught per 1,000 hooks, was standardized using zero-inflated negative binomial 

model (ZINB) that allows for “extra” zeros. ZINB model includes the main variables year, quarter, area, 

hooks per basket (HPB), and CTNO. The standardized CPUE showed a stable and slightly increasing 

trend for shortfin mako sharks. The results obtained in this study can be improved if longer time 

logbook data are available and environmental factors are included in the model. 
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1. Introduction 

Shortfin mako shark, Isurus oxyrinchus, is one of the most commonly caught shark species in the 

Taiwanese commercial offshore longline fishery and the major by-catch of tuna longline fisheries in the 

far seas. Shortfin mako is a large apex predator that exhibits slow growth, low fecundity and late 

maturity, and is particularly susceptible to exploitation owing to its life-history characteristics. Clarke 

et al. (2006) mentioned that about half a million shortfin mako sharks were utilized in the global shark 

fin trade in 2000. Given the high fishing pressure on this species and declining population trends, the 

shortfin mako is currently listed as "Vulnerable" on the IUCN Red List of Threatened Species (Dulvy 

et al., 2008), but very little is known about the stock status of this species in the Indian Ocean. Since 

the International organizations and regional fisheries management organizations (RFMO’s) have 

concerned on the conservation of elasmobranchs in recent years, it is necessary to examine the recent 

trend of shark species by examining the logbook of tuna fisheries. Shortfin mako and blue shark 

(Prionace glauca) are the major shark species for Taiwanese large-scale tuna longline (LSTL) fisheries. 

Reliable catch estimate for shortfin mako shark can be developed because the logbook records of 

shortfin mako sharks were representative of actual catches as all sharks were retained due to its high 

market value. Thus, the objectives of this study are to standardize the CPUE of shortfin mako sharks in 

the Indian Ocean based on the logbook data. 

 

A large proportion of zero values is commonly found in by-catch data obtained from fisheries 

studies involving counts of abundance or CPUE standardization. The zero-inflated negative binomial 

modeling, which can account for a large proportion of zero values than expected, is an appropriate 

approach to model “extra” zero data. Such “extra” zero catches could be attributable to reporting error 

or misidentifications, survey error (in which sharks were present at the site of a longline set but were 

not observed because the gear deployment did not overlap with the depth distribution of sharks or did 

not attract sharks), or both (Brodziak and Walsh,2013). As sharks are common by-catch species in the 

tuna longline fishery, the zero-inflated negative binomial model (ZINB) is commonly used in CPUE 

standardization to address these excessive zero catch of sharks. In this study, the CPUEs of shortfin 

mako sharks in the Indian Ocean were standardized using zero-inflated negative binomial model based 

on logbook data and hopefully these CPUE series can be used in the shortfin mako shark stock 

assessment in 2019. 

 

2. Material and methods 

2.1. Source of data  

The species-specific catch data including tunas, billfishes, and sharks from logbook data in 2005-2018 

were used to standardize CPUE of shortfin mako shark of Taiwanese large-scale longline fishery in the 

Indian Ocean. The summary of these data were shown in Table 1. The catch rate of shortfin mako 

sharks might be affected by spatial and temporal factors. We used the following stratification in our 

models. For temporal factors, we separated the data into 4 quarters: the 1st quarter (January to March), 
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the 2nd quarter (April to June), the 3rd quarter (July to September), and the 4th quarter (October to 

December). For spatial stratification, based on the effort distribution and fishing grounds of the target 

species (Huang and Liu, 2010) (Fig. 1), four areas, namely, A (north of 10ºS, east to 70ºE), B (north of 

10ºS, 70ºE-120ºE), C (south of 10ºS, 20ºE-60ºE), D (south of 10ºS, 60ºE-120ºE) were categorized. The 

areas used in this study are shown in Figure 2. For standardization, CPUE was calculated by set of 

operations based on logbook data during the period of 2005-2018.  

 

2.2. CPUE standardization 

Between 2005 and 2018, data from a total of 450,588 longline sets were collected, which amounted to 

a total effort of 1,446,935,185 hooks and yielded 79,706 shortfin mako sharks. A large proportion of 

sets with zero catch of shortfin mako sharks (about 90%) in the Indian Ocean was found in the logbook 

data. Hence, to address these excessive zero catches, the zero-inflated negative binomial model (ZINB) 

(Lambert, 1992) was applied to the standardization of shortfin mako shark CPUE. This zero-inflated 

negative binomial model is comprised of a counts model that allows for overdispersion in both the 

zeros and positive catches and a binomial model that allows for “extra” zeros (Zuur et al., 2009, 2012; 

Brodziak and Walsh, 2013), with the latter defined as a higher frequency of zeros than expected under 

the Poisson, negative binomial, or other count distributions (Zuur et al., 2009). 

 

The model was fit using zeroinfl function of statistical computing language R (R Development Core 

and Team, 2013) to eliminate some biases by change of targeting species, fishing ground and fishing 

seasons. 

 

Standardized CPUE series for the shortfin mako shark was constructed including main effects and 

interaction terms. The main effects chosen as input into the ZINB analyses were year (Y), quarter (Q), 

area (A), number of hooks per basket (HPB), and vessel size (CTNO). The following additive model 

was applied to the data in this study: 

 

Catch= Year + Quarter + Area + HPB + CTNO 

 (Part 1: Counts model- Negative Binomial; Part 2: Binomial, link = logit) 

 

The probability distribution of a zero-inflated negative binomial random variable Y is given by

 

 

where k is the negative binomial dispersion parameter. 
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3. Results and discussion 

The shortfin mako shark bycatch data are characterized by many zero values and a long right tail (Figs. 

3 and 4). Overall, 89.96% of the total sets in the Indian Ocean had zero bycatch of shortfin mako 

sharks (Table 2). As a result, the following models with many explanatory variables were finally 

selected. The best models for ZINB model chosen by BIC values in the Indian Ocean were “SMA~ 

Year + Quarter + Area + HPB + CTNO”, respectively. The best models were then used in the later 

analyses. 

 

Standardized CPUE series of the shortfin mako shark in the Indian Ocean using the ZINB model were 

shown in Figure 5. The detail values for nominal and standardized CPUE were listed in Tables 3. The 

nominal CPUE of shortfin mako shark in the Indian Ocean showed an inter-annual fluctuation, 

particularly in year 2005 and 2011 (Fig. 5). However, this variability was slightly smoothed in the 

standardized CPUE series. In general, the standardized CPUE series of the shortfin mako sharks caught 

by Taiwanese large-scale longline fishery showed a stable increasing trend (Fig. 5). These stable trends 

suggested that the shortfin mako shark stock in the Indian Ocean seems at the level of optimum 

utilization during the period of 2005-2018.  

 

The diagnostic results from the ZINB model do not indicate severe departure from model assumptions 

(Figs. 6-7). The additional residual plots and ANOVA tables for each model are given in Appendix 

Figs. 1-2 and Table 1. Most main effects and interaction terms tested were significant (mostly P < 0.01) 

and have been included in the final model. However, other factors may affect the standardization of 

CPUE trend. In addition to the temporal and spatial effects, environmental factors are important which 

may affect the representation of standardized CPUE of pelagic fish i.e., swordfish and blue shark in the 

North Pacific Ocean (Bigelow et al., 1999), and big-eye tuna in the Indian Ocean (Okamoto et al., 

2001). In this report, environmental effects were not included in the model for standardization. The 

results obtained in this study can be improved if longer time series of logbook data are available and 

environmental factors were included in the model. 
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Figure 1. Observed effort distributions in the Indian Ocean from 2005 to 2018. 
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Figure 2. Area stratification based on effort distribution and targeting species in this study.  
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Figure 3. Observed distribution of shortfin mako shark CPUE of Taiwanese tuna longline vessels in the 

Indian Ocean from 2005 to 2018. 
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Figure 4. Annual frequency distribution of shortfin mako shark bycatch per set in the Indian Ocean, 

2005–2018. 
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Figure 5. Logbook nominal and standardized CPUE with 95% CI of shortfin shark by Taiwanese 

longline vessels in the Indian Ocean from 2005 to 2018. 
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Figure 6. Diagnostic results from the ZINB model fit to the Indian Ocean longline shortfin mako shark 

bycatch data. 

  



IOTC–2019–WPEB15-22 

 Page 12 of 18 

 

Figure 7. Residual plots for the ZINB model fit to the Indian Ocean longline shortfin mako shark 

bycatch data. 
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Table 1. Summary of information of the logbook data used in this study. 

 

Year 
Indian Ocean 

No. of Hooks No. of Sets 

2005 222,444,476 70,137 

2006 109,164,855 34,005 

2007 139,730,016 43,506 

2008 100,477,617 31,176 

2009 126,934,280 39,355 

2010 97,311,849 29,756 

2011 72,979,298 22,544 

2012 76,963,791 25,283 

2013 75,816,812 23,723 

2014 58,376,963 18,475 

2015 70,863,419 22,525 

2016 101,592,087 31,567 

2017 99,408,067 29,983 

2018 94,871,655 28,552 

Average 103,352,513 32,185 
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Table 2. The logbook percentage of zero-catch of shortfin mako shark for Taiwanese tuna longline 

vessels in the Indian Ocean from 2005 to 2018. 

 

Year Percentage of zero-catch 

2005 90.53% 

2006 91.45% 

2007 94.72% 

2008 93.32% 

2009 90.87% 

2010 91.12% 

2011 89.97% 

2012 90.04% 

2013 89.52% 

2014 90.48% 

2015 90.35% 

2016 86.11% 

2017 83.56% 

2018 84.06% 

Average 89.96% 

 

  



IOTC–2019–WPEB15-22 

 Page 15 of 18 

Table 3. Estimated nominal and standardized CPUE values for shortfin mako shark of the Taiwanese 

tuna longline fishery in the Indian Ocean. 

 

 

Year Nominal Standardized Lower CI Upper CI 

2005 0.04718 0.1574 0.06075 0.25405 

2006 0.04911 0.1652 0.04038 0.29002 

2007 0.02899 0.09857 0.00573 0.19142 

2008 0.06137 0.19018 0.00197 0.3784 

2009 0.06186 0.19636 0.00665 0.38608 

2010 0.05684 0.18141 0.03184 0.33098 

2011 0.06973 0.2059 -0.03042 0.44221 

2012 0.05712 0.16283 0.03641 0.28925 

2013 0.05021 0.168 0.04172 0.29429 

2014 0.04306 0.14144 0.03612 0.24675 

2015 0.04359 0.13875 0.04895 0.22855 

2016 0.06404 0.20355 0.05633 0.35076 

2017 0.07968 0.24557 0.06255 0.4286 

2018 0.07302 0.23118 0.06372 0.39865 
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Appendix Fig. 1. Box plots of the Pearson residuals vs. the covariates for the variables Year for ZINB 

model.  
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Appendix Fig. 2. Box plots of the Pearson residuals vs. the covariates for the variables Quarter, Area, 

HPB, and CTNO for ZINB model. 
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Appendix Table 1. Deviance tables for the ZINB model. 

 

Analysis of Deviance Table (Type II tests) 

Response: SMA 

Parameter Df Chisq Pr(>Chisq) 
 

Year 13 1993.0502 < 2e-16 *** 

Quarter 3 542.4942 < 2e-16 *** 

Area 3 2432.2672 < 2e-16 *** 

HPB 1 393.3266 < 2e-16 *** 

CTNO 2 8.0038 0.01828 * 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 


