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ABSTRACT 

 

This paper briefly describes historical patterns of fishing operations and swordfish 

catches caught by Taiwanese large scale longline in the Indian Ocean. The cluster 

analysis was adopted to explore the targeting of fishing operations. In addition, the 

delta-gamma generalized linear models were selected to conduct the CPUE 

standardizations of swordfish caught by Taiwanese large scale longline fishery 

because large amounts of zero catches existed in the data sets, which resulted in 

skewed distributions for nominal CPUE. The results indicate that the effects of 

targeting (clusters) provided most significant contributions to the explanation of the 

variance of CPUE for the models with positive catches, while the catch probability 

might be mainly influenced by the latitude of fishing operations. The standardized 

CPUE series revealed different trends by areas but they obviously increased in recent 

years except for the Area SW.  

 

 

 

1. INTRODUCTION 

 

    Taiwanese longline fishery in the Indian Ocean commenced in the mid-1950s 

and targeted on yellowfin tuna in the beginning. Following the development of the 

fishery, two different operation patterns were currently established: the first targets on 

albacore for canning and the other on tropical tuna species (bigeye tuna and yellowfin 

tuna) for sashimi market. After 1990, catches of swordfish increased sharply as a 

result of changes in targeting from tunas to swordfish by part of the Taiwanese 

longline fleet, along with the development of longline fisheries in Australia, France 

(La Réunion), Seychelles and Mauritius and arrival of EU longline fleets and other 

fleets from the Atlantic Ocean. Since the mid-2000s annual catches have fallen 

steadily, largely due to the decline in the number of Taiwanese longline vessels active 
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in the Indian Ocean in response to the threat of piracy; however since 2012 catches 

appear to show signs of recovery as a consequence of improvements in security in the 

area off Somalia. In recent years, swordfish catches were mainly made by Taiwanese 

longline fleet (21%), Sri Lankan longline-gillnet fleet (18%) and swordfish targeted 

longline of EU, Spain (12%) (IOTC, 2019).  

   This paper briefly describes historical patterns of fishing operations and swordfish 

catches caught by Taiwanese large scale longline in the Indian Ocean. The cluster 

analysis was adopted to explore the targeting strategies of fishing operations, which 

were further included in CPUE standardization. 

 

 

2. MATERIALS AND METHODS 

 

2.1. Catch and Effort data 

In this study, daily operational catch and effort data (logbook) with 5x5 degree 

longitude and latitude grid for Taiwanese longline fishery during 1979-2019 were 

provided by Oversea Fisheries Development Council of Taiwan (OFDC). It should be 

noted that the data in 2019 is preliminary. 

 

2.2.  Cluster analysis 

The characters of fishing operation, such as number of hooks between float 

(NHBF), material of line, bait and etc., are known to be informative to describe the 

change in target species. Wang and Nishida (2011) also indicated that the model 

performance for CPUE standardization was significantly improved when including 

the effect of NHBF treated as categorical variable. However, NHBF data were 

available since 1995 and obstructed the incorporation of the effect of NHBF when 

conducting the CPUE standardization with data before 1995.  

Previous studies suggested alternative approaches to account for targeting in 

multispecies CPUE based on species composition, such as cluster analysis and 

principle component analysis (e.g. Ortega-García and Gómez-Muňoz, 1992; He et al., 

1997; Pech and Laloë, 1997; Hoyle et al., 2004; Winker et al., 2013; Winker et al., 

2014). These approaches have been applied to conduct the CPUE standardization for 

billfishes in the Indian Ocean (Wang, 2015, 2016, 2017, 2018, 2019). IOTC (2015) 

noted that the use of clustering and PCA was a useful approach in dealing with the 

absence of HBF, and such techniques help examine sets that are used for targeting 

certain species groups and use all the data in the database of Taiwan. IOTC (2015) 

also agreed that the PCA approach should be used instead of the clustering approach 

as this gave better results on AIC and BIC values, when modelling the positive sets. 
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However, cluster analysis was commonly adopted to derive targeting strategies and 

include targeting effects in the standardization for main species in the Indian Ocean 

since the Second IOTC CPUE Workshop on Longline Fisheries in 2015 (Hoyle et al., 

2015, 2018, 2019). 

In this study, cluster analysis was performed based on species composition of the 

catches of albacore (ALB), bigeye tuna (BET), yellowfin tuna (YFT), swordfish 

(SWO), southern bluefin tuna (SBT), sharks (SKX) and other species (OTH). 

However, clustering operational set-by-set data might include large amount noise 

because most of billfishes were caught by Taiwanese vessels as bycatches. Therefore, 

the cluster analysis was performed based weekly-aggregated data and then merged the 

clusters with set-by-set operational data to identify the targeting fishing operations.  

He et al. (1997) suggested a cluster analysis with two steps to classify the data 

sets because the large number of data sets precluded direct hierarchical cluster 

analysis. First, a non-hierarchical cluster analysis (K-means method) was used to 

group the species composition from all data sets into 64 clusters for taking the mixture 

of fishing operations into account (P2
6 which means 2 species can be chosen with 

priority from 8 species). Second, a hierarchical cluster analysis with Ward minimum 

variance method was applied to the squared Euclidean distances calculated based on 

the species composition from 64 non-hierarchical clusters obtained from the first step. 

Non-hierarchical and hierarchical cluster analyses were conducted using generic 

functions kmeans() and hclust() of R (R Core Team, 2020). 

The number of clusters was commonly selected based on the proportion of data 

sets or improvement in deviance between/within clusters against different number of 

clusters in previous studies (e.g. He et al., 1997; Hoyle et al., 2015; Matsumoto et al., 

2018; Wang, 2019) and this may be relatively subjective. As Amruthnath and Gupta 

(2019) recommended, this study selected the number of clusters based the 

permutation ANOVA (PERMANOVA) for significance test of the centroids of the 

groups and Beta diversity test for the permutation test for homogeneity of multivariate 

dispersion, and visualization diagnostics were conducted based on the plot from the 

principal coordinate analysis (PCoA) for the multivariate dispersions by clusters. In 

this study, the number of clusters was determined based on the smallest number when 

both PERMANOVA and Beta diversity test were significant. In addition, cluster 

analyses were performed by four fishing areas separately (Fig. 1). 

 

2.3. CPUE Standardization 

Although Taiwanese longline fishery seasonally targeted swordfish in the 

southwestern Indian Ocean, a large amount of zero-catches was recorded in the 

operational catch and effort data sets because swordfish was still mainly the bycatch 
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species of Taiwanese longline fishery in the entire Indian Ocean. Historically, ignoring 

zero observations or replacing them by a constant was the most common approach. An 

alternative and popular way to deal with zeros was through the delta approach (Hinton 

and Maunder, 2004; Maunder and Punt, 2004). IOTC (2016) also noted the use of the 

delta approach to accommodate the high proportion of zero catches. Therefore, the 

delta-general linear models with different assumptions of error distribution were 

applied to conduct the CPUE standardization of swordfish in the Indian Ocean 

(Pennington, 1983; Lo et. al., 1992; Pennington, 1996; Andrade, 2008; Lauretta et al., 

2016; Langley, 2019).  

As the approach of Wang (2017), the models were simply conducted with the main 

effects of year, quarter, longitude, latitude and fishing targeting (clusters), while 

interactions between main effects were not incorporated into the models. In addition, 

CPUE standardizations were also performed by areas separately (Fig. 1). The models 

for positive catches and presence/absence data were conducted as follows:  

 

For CPUE of positive catches: 

(log( )) posCatch Y Q CT Lon Lat T offset Hooks = + + + + + + + +  

For presence/absence of catches: 

delPA Y Q CT Lon Lat T = + + + + + + +  

where Catch is the catch in number of positive catch of swordfish  

 PA is the presence/absence of catch,  

 Hooks is the effort of 1,000 hooks, 

 μ is the intercept, 

 Y is the effect of year, 

 Q is the effect of quarter, 

 CT is the effect of vessel scale, 

 Lon is the effect of longitude, 

 Lat is the effect of latitude, 

 T is the effect of targeting (cluster), 

 εpos is the error term assumed based on various distribution, 

 εdel is the error term, εdel ~ Binomial distribution. 

 

To examine the appropriateness to the assumption of error distribution, this study 

applied normal, poisson, gamma, negative-binomial and tweedie distributions to the 

error distribution of the model for the positive catches and specified “log” for the 

model link function. For the model with tweedie distribution, the index of power 
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variance function was tested using values of 1.1-1.9. In addition, the models with 

negative-binomial and tweedie distributions were also performed by including all of 

positive and zero catches (catches were added 1 to avoid the problem for the 

logarithm of zero) to examine the model performance to the data overdispersed with 

excess of zero catches.  

The stepwise searches (“both” direction, i.e. “backward” and “forward”) based 

on the values of Akaike information criterion (AIC) were performed for selecting the 

explanatory variables for each model. Then, the coefficient of determination (R2), and 

Bayesian information criterion (BIC) were calculated for the models with selected 

explanatory variables. The AIC and BIC, which were calculated based on the 

likelihoods with full constants obtained glm() and glm.nb(), were used to compare the 

models with different error distributions (e.g. Setyadji et al., 2019). In addition, 

dispersion statistics for Pearson residuals were calculated to check whether under- or 

overdispersions resulted from the models with an assumed error distribution. 

The standardized CPUE were calculated based on the estimates of least square 

means of the interaction between the effects of year and area. The area-specific 

standardized CPUE trends were estimated based on the exponentiations of the adjust 

means (least square means) of the year effects (Butterworth, 1996; Maunder and Punt, 

2004). The standardized relative abundance index was calculated by the product of the 

standardized CPUE of positive catches and the standardized probability of positive 

catches: 

²log( )

1

P

CPUE

P

e
index e

e

 
=  

+ 

%

%  

where ²CPUE  is the adjust means (least square means) of the year effect of 

the model for positive catches, 

 P%  is the adjust means (least square means) of the year effect of 

the model for presence/absence of catches.  

 

 

 

3. RESULTS AND DISCUSSION 

 

3.1. Historical fishing trends 

Figs. 2 to 4 show the Taiwanese historical nominal catches of swordfish obtained 

from IOTC database and the area-specific fishing effort (hooks) and catches of 

swordfish based on the logbook data of Taiwanese large scale longline fishery. The 

swordfish catches were mainly caught in the Area NE before the 1990s and most of 
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the catches were made in the Area NW thereafter due to the substantial increase of the 

fishing efforts although substantial catches made in Area SW from the early to mid-

1990s. In recent decades, the annual proportions of zero-catch were about 40-70% of 

total data sets, while the proportions of zero catch decreased in recent years (Fig. 5). 

Figs. 6 to 8 show the distributions of catch and CPUE of swordfish and fishing 

effort (hooks) of Taiwanese large scale longline fishery in the Indian Ocean. The 

catches of swordfish were mainly made in the tropical area in the central Indian 

Ocean before the 1990s; expanded to the entire Indian Ocean thereafter due to the 

expansion of the efforts; mainly concentrated in the tropical area and the southwestern 

Indian Ocean since the mid-2000s when the efforts substantially decreased in part of 

the temperate waters. High CPUEs mainly occurred in the tropical area and the 

southwestern Indian Ocean even for the period from the early 1990s to the mid-2000s 

when high catches appeared in the entire Indian Ocean. 

The fishing operation of the vessels in the Indian Ocean also tended to use deep 

sets since the early 2000s (Figs. 9 and 10). High CPUEs of swordfish generally 

occurred with the NHBF less than 9 hooks and the operations were relatively similar 

to those of targeting albacore tuna (Fig. 11).  

 

3.2. Cluster analysis 

    Based on the results of PERMANOVA and Beta diversity test (Table 1), 5 

clusters were selected for Areas NW, NE and SW, while 4 clusters was selected for 

Area SE. The improvements in deviances among and between clusters look 

appropriate, and plots of PCoA for the multivariate dispersions indicated that the 

centroids of species compositions were obviously distinct by clusters (Figs. 12 and 

13).  

    For each area, the species compositions revealed different patterns by clusters 

(Fig. 14). Swordfish were not major species for all clusters and areas except for 

Cluster 4 in Area SW contained relatively high proportions of swordfish in Area SW 

during the 1990s and 2000s. Distributions of swordfish catches also revealed low 

proportions for most clusters and areas except for Cluster 4 in Area SW (Fig. 15). Fig. 

16 show the swordfish catches and efforts by clusters and areas and swordfish catches 

were contained in different clusters in different periods when different levels of efforts 

were deployed. Therefore, the data of all clusters were used to conducted the further 

CPUE standardizations.  

    The annual trends of the proportions of zero catches of swordfish roughly 

decreased by years for all areas (Fig. 17). However, the logarithms of nominal CPUE 

of swordfish generally revealed skewed distributions obtained from all data and from 

the data with only positive catches except for Cluster 4 in Area SW (Fig. 18). 
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3.3. CPUE standardization 

    For the models with tweedie error distribution, Pearson dispersion statistics 

would be most appropriate (close to 1) when setting the index of power variance 

function equal to 1.5 for all areas. Based on the AIC model selections for the models 

for positive catches and presence/absence catches, all of the effects were statistically 

significant and remained in the models for all areas. For the models for positive 

catches, the models with gamma error distribution would be the optimal models for all 

areas based on the values of AIC, BIC and Pearson dispersion statistics although R2 

may not be higher than other models (Table 2). Diagnostic plots for residuals also 

indicated that the models with gamma error distribution (Fig. 19) should be most 

appropriate than other models because there were less increasing or decreasing trends 

in the range of predicted values when assuming a gamma error distribution (plots for 

other models by areas were not shown here but the residuals revealed obvious patterns 

with predicted values). Although AIC and BIC obtained from the models for all of 

positive and zero catches cannot be comparable with those obtained from the models 

for only positive catches, Pearson dispersion statistics showed overdispersions 

resulted from the most of models with negative-binomial and tweedie error 

distributions except for Area SE (Table 3). In addition, there were also problematic 

patterns for diagnostic plots for residuals when adopting the models fitted to all of 

positive and zero catches. Therefore, the results obtained two steps delta approaches, 

which were based on the models with gamma error distribution for the positive 

catches and the models for presence/absence catches, were selected to produce the 

standardized CPUE series.  

The ANOVA tables for selected models are shown in Table 4. The results 

indicate that the effects of T (clusters) provided most significant contributions to the 

explanation of variance of CPUE for the models for positive catches except for Area 

NE, while the effects of Lat were the most significant variable for the models for 

presence/absence catches except for Area SW. Thus, the catch rates the positive 

catches of swordfish might be influenced by the targeting of the fishing operation, 

while the latitude of the fishing operations might influence the opportunity of catching 

swordfish.  

    The area-specific standardized CPUE series are shown in Fig. 14. The CPUE 

series in the Area NW fluctuated with an increasing trend; the CPUE series in the 

Area NE fluctuated without a trend after the early 1980s; CPUE in the Area SW 

substantially increased from the early 1990s to mid-1990s, gradually decreased until 

the mid-2000s, and revealed a stable trend thereafter; the CPUE series in the Area SE 
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gradually increased before the mid-1990s, then substantially decreased until the late 

2000s, and revealed an increasing trend in recent years. The standardized CPUE series 

revealed different trends by areas but they obviously increased in recent years except 

for the Area SW.  

 

 

REFERENCE 

 

Amruthnath, N., Gupta, T., 2019. Fault diagnosis using clustering. What statistical test 

to use for hypothesis testing? Machine Learning and Applications: An 

International Journal (MLAIJ) Vol.6, No.1. 

Andrade, H.A., 2008. Using delta-gamma generalized linear models to standardize 

catch rates of yellowfin tuna caught by Brazilian bait-boats. ICCAT 

SCRS/2008/166. 

Setyadji, B., Andrade, H.A., Proctor, C.H., 2019. Standardization of catch per unit effort 

with high proportion of zero catches: an application to black marlin Istiompax 

indica (Cuvier, 1832) caught by the Indonesian tuna longline fleet in the eastern 

Indian Ocean. Turk. J. Fish.& Aquat. Sci. 19(2), 119-129.  

Butterworth, D.S., 1996. A possible alternative approach for generalized linear model 

analysis of tuna CPUE data. ICCAT Col. Vol. Sci. Pap., 45: 123-124. 

He, X., Bigelow, K.A., Boggs, C.H., 1997. Cluster analysis of longline sets and fishing 

strategies within the Hawaii‐based fishery. Fish. Res. 31: 147‐158. 

Hinton, M.G., Maunder, M.N., 2004. Methods for standardizing CPUE and how to 

select among them. Col. Vol. Sci. Pap. ICCAT, 56: 169-177. 

Hoyle, S.D., Fu, D., Kim, D.N., Lee, S.I., Matsumoto, T., Satoh, K., Wang, S.P., 

Kitakado, T., 2019. Collaborative study of albacore tuna CPUE from multiple 

Indian Ocean longline fleets in 2019. IOTC-2019-WPTmT07(AS)-10 

Hoyle, S.D., Kitakado, T., Yeh, Y.M., Wang, S.P., Wu, R.F., Chang, F.C., Matsumoto, 

T., Satoh, K., Kim, D.N., Lee, S.I., Chassot, E., Fu, D., 2018. Report of the 

Fifth IOTC CPUE Workshop on Longline Fisheries, May 28th–June 1st, 2018. 

IOTC–2018–CPUEWS05–R[E]. 

Hoyle, S.D., Langley, A.D., Campbell, R.A., 2014. Recommended approaches for 

standardizing CPUE data from pelagic fisheries. WCPFC-SC10-2014/ SA-IP-

10. 



IOTC–2020–WPB18–15–Rev1 

Page 9 of 64  

Hoyle, S.D., Okamoto, H., Yeh, Y.M., Kim, Z.G., Lee, S.I., Sharma, R., 2015. Report 

of the 2nd CPUE Workshop on Longline Fisheries, April 30th – May 2nd, 2015. 

IOTC–2015–CPUEWS02–R[E] 

IOTC, 2015. Report of the 13th Session of the IOTC Working Party on Billfish. 

IOTC-2015-WPB13-R[E]. 

IOTC, 2016. Report of the 14th Session of the IOTC Working Party on Billfish. 

IOTC-2016-WPB14-R[E]. 

IOTC, 2019. Report of the 17th Session of the IOTC Working Party on Billfish. 

IOTC-2019-WPB17-R[E]. 

Langley, A.D., An investigation of the performance of CPUE modelling approaches – 

a simulation study. New Zealand Fisheries Assessment Report 2019/57. 

Lauretta, M.V., Walter, J.F., Christman, M.C., 2016. Some considerations for CPUE 

standardization; variance estimation and distributional considerations. ICCAT 

Collect. Vol. Sci. Pap. ICCAT, 72(9): 2304-2312.  

Lo, N.C.H., Jacobson, L.D., Squire, J.L., 1992. Indices of relative abundance from fish 

spotter data based on delta-lognormal models. Can. J. Fish. Aquat. Sci., 49: 

2515-2526. 

Matsumoto, T., Satoh, K. Hoyle, S., 2018. Standardization of bigeye and yellowfin tuna 

CPUE by Japanese longline in the Indian Ocean which includes cluster analysis. 

IOTC–2018–WPTT20–37. 

Maunder, N.M., Punt, A.E., 2004. Standardizing catch and effort data: a review of 

recent approaches. Fish. Res., 70: 141-159. 

Ortega-García, S., Gómez-Muňoz, V., 1992. Standardization of fishing effort using 

principle component analysis of vessel characteristics: the Mexican tuna purse-

seiners. Sci. Mar. 56: 17-20. 

Pech, N., Laloë, F., 1997. Use of principal component analysis with instrumental 

variables (PCAIV) to analyse fisheries catch data. ICES J. Mar. Sci. 54: 32-47. 

Pennington, M., 1983. Efficient estimation of abundance, for fish and plankton 

surveys. Biometrics, 39: 281-286. 

Pennington, M., 1996. Estimating the mean and variance from highly skewed marine 

data. Can. J. Fish. Aquat. Sci., 94: 498-505. 

Wang, S.P., 2015. CPUE standardization of striped marlin (Kajikia audax) caught by 



IOTC–2020–WPB18–15–Rev1 

Page 10 of 64  

Taiwanese longline fishery in the Indian Ocean using targeting effect derived 

from cluster and principle component analyses. IOTC–2015–WPB13–31 

Rev_1. 

Wang, S.P., 2016. CPUE standardization of blue marlin (Makaira nigricans) caught 

by Taiwanese longline fishery in the Indian Ocean using targeting effect 

derived from principle component analyses. IOTC–2016–WPB14–23. 

Wang, S.P., 2017. CPUE standardization of swordfish (Xiphias gladius) caught by 

Taiwanese longline fishery in the Indian Ocean. IOTC–2017–WPB15–

17_Rev1.  

Wang, S.P., 2018. CPUE standardization of striped marlin (Tetrapturus audax) caught 

by Taiwanese large scale longline fishery in the Indian Ocean. IOTC–2018–

WPB16–18_Rev1. 

Wang, S.P., 2019. CPUE standardization of blue marlin (Makaira nigricans) caught 

by Taiwanese large scale longline fishery in the Indian Ocean. IOTC–2019–

WPB17–18. 

Wang, S.P., Nishida, T., 2011. CPUE standardization of swordfish (Xiphias gladius) 

caught by Taiwanese longline fishery in the Indian Ocean. IOTC-2011-

WPB09-12.  

Winker, H., Kerwath, S.E., Attwood, C.G., 2013. Comparison of two approaches to 

standardize catch-per-unit-effort for targeting behaviour in a multispecies hand-

line fishery. Fish. Res. 139: 118-131.  

Winker, H., Kerwath, S.E., Attwood, C.G., 2014. Proof of concept for a novel 

procedure to standardize multispecies catch and effort data. Fish. Res. 155: 

149-159. 

 

 



IOTC–2020–WPB18–15–Rev1 

Page 11 of 64  

 

Fig. 1. Area stratification for billfishes in the Indian Ocean. 

 

 

 

 
Fig. 2. Annual nominal catches of swordfish caught by Taiwanese large scale longline 

fishery obtained from IOTC database. 
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Fig. 3. Annual area-specific fishing effort (hooks) based on the logbook data of 

Taiwanese large scale longline fishery. 
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Fig. 4. Annual area-specific catches of swordfish based on the logbook data of 

Taiwanese large scale longline fishery. 
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Fig. 5. Annual proportions of positive and zero catches of swordfish caught by 

Taiwanese large scale longline fishery in the Indian Ocean. 
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Fig. 6. Catch distributions of swordfish caught by Taiwanese large scale longline 

fishery in the Indian Ocean. 
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Fig. 7. Nominal CPUE distributions of swordfish caught by Taiwanese large scale 

longline fishery in the Indian Ocean. 
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Fig. 8. Effort (hooks) distributions of Taiwanese large scale longline fishery in the 

Indian Ocean. 
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Fig. 9. Annual trend of the boxplot for the number of hooks between float of 

Taiwanese large scale longline fishery in the Indian Ocean. 
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Fig. 9. (continued). 
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Fig. 10. Annual trend of the proportion of set type of Taiwanese large scale longline 

fishery in the Indian Ocean. Regular set: number of hooks between float (NHBF) < 10 

hooks; Deep set: 10 hooks ≤ NHBF < 15 hooks; Ultra-deep: NHBF ≥ 15 hooks.  
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Fig. 10. (continued). 
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Fig. 11. Nominal CPUEs of main species caught by Taiwanese large scale longline 

fishery grouped by number of hooks between float (NHBF). 
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Area NW 

 

Fig. 12. The improvements in deviances among and between clusters for the data of 

Taiwanese large scale longline fishery in the Indian Ocean. 
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Area NE 

 

Fig. 12. (continued). 
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Area SW 

 

Fig. 12. (continued). 
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Area SE 

 

Fig. 12. (continued). 
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Area NW 

 

Fig. 13. Plot from the principal coordinate analysis (PCoA) for the multivariate 

dispersions by clusters for the data of Taiwanese large scale longline fishery in the 

Indian Ocean. 
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Area NE 

 

Fig. 13. (continued). 
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Area SW 

 

Fig. 13. (continued). 
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Area SE 

 

Fig. 13. (continued). 
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Area NW 

 

Fig. 14. Annual catches and compositions by species and clusters for Taiwanese large 

scale longline fishery in the Indian Ocean. 
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Area NE 

 

Fig. 14. (continued).  
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Area SW 

 

Fig. 14. (continued).  
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Area SE 

 

Fig. 14. (continued).  
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Area NW 

 

Fig. 15. Distributions of swordfish catches by clusters for Taiwanese large scale 

longline fishery in the Indian Ocean. 
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Area NE 

 

Fig. 15. (continued).  
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Area SW 

 

Fig. 15. (continued).  
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Area SE 

 

Fig. 15. (continued).  
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Area NW 

 

Fig. 16. Annual swordfish catches and efforts by clusters for Taiwanese large scale 

longline fishery in the Indian Ocean. 
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Area NE 

 

Fig. 16. (continued). 
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Area SW 

 

Fig. 16. (continued). 
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Area SE 

 

Fig. 16. (continued). 
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Area NW 

 

Area NE 

 

Fig. 17. Annual proportions of zero catches of swordfish caught by Taiwanese large 

scale longline fishery in the Indian Ocean. 
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Area SW 

 

Area SE 

 

Fig. 17. (continued).  
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Area NW - all data 

 

Area NW - data with only positive catches 

 

Fig. 18. Distributions of logarithms of nominal CPUE of swordfish aught by 

Taiwanese large scale longline fishery in the Indian Ocean. 
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Area NE - all data 

 

Area NE - data with only positive catches 

 

Fig. 18. (continued). 
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Area SW - all data 

 

Area SW - data with only positive catches 

 

Fig. 18. (continued). 
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Area SE - all data 

 

Area SE - data with only positive catches 

 

Fig. 18. (continued). 
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Area NW 

 

Fig. 19. Diagnostic plots for residuals for the models with gamma error distribution 

fitted to the data of Taiwanese large scale longline fishery in the Indian Ocean. 
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Area NE 

 

Fig. 19. (continued).  
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Area SW 

 

Fig. 19. (continued).  
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Area SE 

 

Fig. 19. (continued).  
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Fig. 20. Area-specific standardized CPUE series of swordfish caught by Taiwanese 

large scale longline fishery in the Indian Ocean. Gary area shows the 95% confidence 

interval.  
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Fig. 20. (continued).  
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Fig. 20. (continued).  
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Fig. 20. (continued).  
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Table 1. The results of PERMANOVA and Beta diversity test for the centroids of the 

clusters selected for the data of Taiwanese large scale longline fishery in the Indian 

Ocean. 

 

Area NW 

PERMANOVA 

 Df Sum Sq R2 F Pr(>F)  

Cluster 4 5.2531 0.60744 14.313 0.001 *** 

Residual 37 3.3948 0.39256    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Beta diversity test 

 Df Sum Sq Mean Sq F N.Perm Pr(>F)  

Groups 4 0.27297 0.068243 8.8822 999 0.001 *** 

Residuals 37 0.28428 0.007683     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 

Area NE 

PERMANOVA 

 Df Sum Sq R2 F Pr(>F)  

Cluster 4 5.3057 0.64455 16.774 0.001 *** 

Residual 37 2.9259 0.35545    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Beta diversity test 

 Df Sum Sq Mean Sq F N.Perm Pr(>F)  

Groups 4 0.16005 0.040013 5.7081 999 0.004 *** 

Residuals 37 0.25937 0.00701     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 1. (continued). 

 

Area SW 

PERMANOVA 

 Df Sum Sq R2 F Pr(>F)  

Cluster 4 7.82 0.63094 15.814 0.001 *** 

Residual 37 4.5742 0.36906    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Beta diversity test 

 Df Sum Sq Mean Sq F N.Perm Pr(>F)  

Groups 4 0.40911 0.10228 11.837 999 0.001 *** 

Residuals 37 0.31969 0.00864     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 

Area SE 

PERMANOVA 

 Df Sum Sq R2 F Pr(>F)  

Cluster 3 4.7659 0.53483 14.563 0.001 *** 

Residual 38 4.1452 0.46517    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Beta diversity test 

 Df Sum Sq Mean Sq F N.Perm Pr(>F)  

Groups 3 0.28666 0.095553 9.0637 999 0.001 *** 

Residuals 38 0.40061 0.010542     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 2. The values of the coefficient of determination (R2), Akaike information 

criterion (AIC), Bayesian information criterion (BIC) and dispersion statistics for 

Pearson residuals obtained from the models for positive catches of swordfish caught 

by Taiwanese large scale longline fishery in the Indian Ocean. 

 

Area Model R2 AIC   BIC   Dispersion 

 Gamma 0.245  458,387  459,055  0.876  

 Tweedie 0.259  492,345  493,014  1.558  

NE Negative-binomial 0.266  494,311  494,980  1.368  

 Poisson 0.262  563,105  563,764  2.930  

 Lognormal 0.231  649,587  650,256  13.202  

 Gamma 0.170  1,372,788  1,373,512  1.046  

 Negative-binomial 0.182  1,438,276  1,439,000  1.534  

NW Tweedie 0.178  1,457,369  1,458,093  2.052  

 Poisson 0.174  1,746,373  1,747,087  4.171  

 Lognormal 0.126  1,813,589  1,814,313  19.913  

 Gamma 0.361  172,148  172,733  0.840  

 Tweedie 0.378  187,055  187,640  1.352  

SE Negative-binomial 0.387  193,155  193,740  1.335  

 Poisson 0.382  208,232  208,808  2.272  

 Lognormal 0.331  257,396  257,955  7.989  

 Gamma 0.506  318,173  318,751  0.915  

 Negative-binomial 0.530  336,651  337,229  1.326  

SW Tweedie 0.520  342,450  343,028  1.921  

 Poisson 0.504  438,523  439,092  4.441  

 Lognormal 0.380  449,017  449,595  32.047  
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Table 3. The values of the coefficient of determination (R2), Akaike information 

criterion (AIC), Bayesian information criterion (BIC) and dispersion statistics for 

Pearson residuals obtained from the models for all of positive and zero catches of 

swordfish caught by Taiwanese large scale longline fishery in the Indian Ocean. 

 

Area Model R2 AIC   BIC   Dispersion 

NE Tweedie 0.216 866,799  867,534  1.402 

 Negative-binomial 0.223 883,191  883,925  1.327 

NW Negative-binomial 0.228 2,305,762  2,306,535  1.517 

 Tweedie 0.221 2,315,936  2,316,709  1.909 

SE Tweedie 0.240 466,588  467,257  1.055 

 Negative-binomial 0.246 510,667  511,336  1.179 

SW Tweedie 0.485 659,223  659,864  1.646 

 Negative-binomial 0.500 660,036  660,677  1.255 
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Table 4. ANOVA tables for the models with gamma error distribution for positive 

catches and the models with binomial error distribution for presence/absence catches 

of swordfish caught by Taiwanese large scale longline fishery in the Indian Ocean. 

 

Area NW 

Models with gamma error distribution for positive catches 

 Sum Sq Df F values Pr(>F)  

Y 9896 40 236.544 < 2.2e-16 *** 

Q 2394 3 762.916 < 2.2e-16 *** 

CT 132 4 31.631 < 2.2e-16 *** 

Lon 3156 7 431.081 < 2.2e-16 *** 

Lat 8210 8 981.246 < 2.2e-16 *** 

T 12220 4 2920.942 < 2.2e-16 *** 

Residuals 325314 311041    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

Models with binomial error distribution for presence/absence catches 

 LR Chisq Df Pr(>Chisq)  

Y 10929.3 40 < 2.2e-16 *** 

Q 3609.1 3 < 2.2e-16 *** 

CT 496.1 4 < 2.2e-16 *** 

Lon 1617.2 8 < 2.2e-16 *** 

Lat 27000 8 < 2.2e-16 *** 

T 3890.6 4 < 2.2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 4. (continued). 

 

Area NE 

Models with gamma error distribution for positive catches 

 Sum Sq Df F values Pr(>F)  

Y 5052 40 144.188 < 2.2e-16 *** 

Q 363 3 137.971 < 2.2e-16 *** 

CT 97 4 27.77 < 2.2e-16 *** 

Lon 126 9 16.006 < 2.2e-16 *** 

Lat 2467 7 402.424 < 2.2e-16 *** 

T 1555 4 443.81 < 2.2e-16 *** 

Residuals 104941 119808    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

Models with binomial error distribution for presence/absence catches 

 LR Chisq Df Pr(>Chisq)  

Y 2897.5 40 < 2.2e-16 *** 

Q 884.6 3 < 2.2e-16 *** 

CT 814.7 6 < 2.2e-16 *** 

Lon 654.5 9 < 2.2e-16 *** 

Lat 5479.8 7 < 2.2e-16 *** 

T 499.8 4 < 2.2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 4. (continued). 

 

Area SW 

Models with gamma error distribution for positive catches 

 Sum Sq Df F values Pr(>F)  

Y 7179 40 196.204 < 2.2e-16 *** 

Q 407 3 148.163 < 2.2e-16 *** 

CT 40 3 14.582 1.72E-09 *** 

Lon 462 7 72.087 < 2.2e-16 *** 

Lat 997 4 272.456 < 2.2e-16 *** 

T 3987 4 1089.697 < 2.2e-16 *** 

Residuals 65078 71143    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

Models with binomial error distribution for presence/absence catches 

 LR Chisq Df Pr(>Chisq)  

Y 3617.4 40 < 2.2e-16 *** 

Q 1430.3 3 < 2.2e-16 *** 

CT 223.6 4 < 2.2e-16 *** 

Lon 1040.9 7 < 2.2e-16 *** 

Lat 1635.3 4 < 2.2e-16 *** 

T 5958.1 4 < 2.2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 4. (continued). 

 

Area SE 

Models with gamma error distribution for positive catches 

 Sum Sq Df F values Pr(>F)  

Y 1853 40 55.1761 < 2.2e-16 *** 

Q 8 3 3.1321 0.02447 *** 

CT 141 3 56.128 < 2.2e-16 *** 

Lon 264 11 28.5841 < 2.2e-16 *** 

Lat 23 4 6.7524 1.99E-05 *** 

T 3615 3 1434.9873 < 2.2e-16 *** 

Residuals 43905 52282    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

Models with binomial error distribution for presence/absence catches 

 LR Chisq Df Pr(>Chisq)  

Y 6924.5 40 < 2.2e-16 *** 

Q 146.5 3 < 2.2e-16 *** 

CT 219.8 4 < 2.2e-16 *** 

Lon 491.3 11 < 2.2e-16 *** 

Lat 837.9 4 < 2.2e-16 *** 

T 482.9 3 < 2.2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 


