Quantifying the increase in fishing efficiency due to the use of drifting FADs equipped with echo-sounders in tropical tuna purse seine fisheries

David M. Kaplan, Gwenaëlle Wain, Loreleï Guéry, Daniel Gaertner

IRD, MARBEC Sète, France

2020-10-19 IOTC-2020-WPTT22(AS)-17_Rev2

Wain G, Guéry L, Kaplan DM, Gaertner D (accepted) Quantifying the increase in fishing efficiency due to the use of drifting FADs equipped with echo-sounders in tropical tuna purse seine fisheries. ICES Journal of Marine Science

Echosounder impacts on PS fishing

Fishing on a vessel's floating objects (FOBs) equipped with echosounder buoys can impact fishing in a number of ways:

- Reduce search time
- Increase catch
- Change catch composition
- Change fishing strategy

Echosounder impacts on PS fishing

Fishing on a vessel's floating objects (FOBs) equipped with echosounder buoys can impact fishing in a number of ways:

- Reduce search time
- Increase catch
- Change catch composition
- Change fishing strategy

Challenge \rightarrow Understanding FOB (\approx buoy) ownership

- Logbooks + FOB trajectories
- Base conditions of water trajectory, high emission rate, etc.
- One of two additional conditions:
 - 1. Matching logbook & FOB vessel names
 - 2. < 4 km spatial separation
- Vessel names only works for recent Marine Instruments buoys
- 4 km condition based on separation distance for FOBs meeting vessel name condition
- Error rate of $\approx 5\%$ based on free school sets

Set categories

Ownership methodology + tracking buoy model allowed us to place each French PS FOB set in the Indian Ocean between 2010 & 2017 into one of three categories:

- Foreign (F): Fishing vessel had no access to buoy tracking information
- Owned-echosounder (*O-E*): Fishing vessel had access to the buoy tracking data, but the buoy model was not echosounder equipped
- Owned+echosounder (*O*+*E*): Fishing vessel had access to tracking and echosounder data
- \rightarrow Examine catch of F versus O+E sets

Analyses: Raw data

Temporal evolution

- → Recent increase in number of FOB sets
- → Increase in fraction of sets on owned FOBs

Sets per vessel

- → FOB *increase* 2014-2017: **51** sets/yr
- → FSC decrease 2014-2017: 13 sets/yr

Null set reduction?

- → Sample size outliers: 2011:O+E & 2014:O-E
- → No apparent difference in null sets by category

Catch per positive set?

→ Mean for O+E consistently higher than for F after 2011

 \rightarrow Approximately 2.6 tonnes per set $\approx 10\%$

Set size composition

Difference in Proportion between F and O+E

→ Non-linear transition around ≈25 tonnes ≈mean set size

Species composition?

→ Small, but consistent, shift over time to >SKJ for O+E

→ Learning process?

Analyses: Model outputs

Model motivation

- Raw data could have spatial, temporal or vessel biases
- Standardize data to remove biases and extract echosounder effect
- Mostly GAM models (total catch, set category)
- Also Beta regression (species composition) & GLM (robustness of results)
- Focus primarily on 2012-2017
 - Avoid 2011: small sample size / learning period

Full model list

ID	Depend. var.	Data distribution	Type	Time period	Model equation
A1	Total catch	Gamma	GAM	2010-2017	te(lon,lat,by=season)+vessel+s(year,by=category)
A2	Total catch	Gamma	GAM	2012-2017	te(lon,lat,by=season)+vessel+s(year)+category
L1	Total catch	Gamma	GLM	2012-2017	cwp55+vessel+season+year+category
A3	Total catch	Gamma	GAM	2012-2017	te(lon,lat,by=category:season)+vessel+s(year)
B1	Proportion of SKJ	Beta	Beta regr.	2010-2017	cwp55+vessel+season+category*year+year ² +year ³ +year ⁴
N1	Category F or E	Binomial	GAM	2012-2017	te(lon,lat,by=season)+vessel+s(year)+size class

Catch per set

	GAM Model A2			GLM Model L1		
	Estimate	Pr(> t)		Estimate	Pr(> t)	
Intercept (Cat. F)	22.00	0.0000	***	21.7	0.0000	***
Category O-E	-2.26	0.2241		0.2	0.9253	
Category O+E	1.98	0.0001	***	2.5	0.0000	***

Model A2: total catch ~ te(lon,lat,by=season)+vessel+s(year)+category

Model L1: total catch ~ cwp55+vessel+season+year+category

- → Both GAM & GLM: 2.0-2.5 tonnes per set increase
- → GAM more sophisticated, "better" standardization

Proportion SKJ

Beta Model B1									
	Estimate	Pr(>z)							
Intercept (Cat. F)	0.05	0.5701							
Year	7.14	0.0000	***						
Year ²	6.59	0.0000	***						
Year ³	-7.76	0.0000	***						
Year ⁴	-1.52	0.0935	-						
Category O-E	0.08	0.4796							
Category O+E	0.00	0.8112							
Year : Category O-E	2.82	0.7120							
Year : Category O+E	15.39	0.0000	***						

 $\textbf{Model B1:} \ Prop. \ SKJ \sim cwp55 + vessel + season + category*year + year^2 + year^3 + year^4$

→ Positive interaction between time and proportion SKJ

Set size composition

52.511 5.25 5.11 (4)

Model N1: Set category \sim te(lon,lat,by=season) + vessel + s(year) + size class

→ Consistent with, but somewhat less dramatic than, analyses of raw data

Spatial effects

- Model A3: te(lon,lat,by=category:season)
- Green-Yellow: More O+E catch
- Black contours: > 5 tonnes difference
- Red contours: Significant difference
- **Dots:** Data points
- Seasons 1 & 3: 4 months
- Seasons 2 & 4: 2 months

- Pretty noisy / no strong patterns
- Perhaps off Somalia Season 4 & off Tanzania Season 2

Conclusions

- Robust methodology for assigning FOB ownership
- Depends on fine scale FOB trajectory data
- Increase in proportion sets on own FOBs
- Recent change from FSC to FOB fishing
- Echosounders increase catch per set \approx 2-2.5 tonnes \approx 10%
 - Net gain of ≈US\$5000-7000 over life of buoy
 - Search time change to be quantified, but net 30% increase in FOB sets/vessel/year
- Accounting for foreign sets, net change in FOB fishing efficiency of 1.7%-4.0%
- Reduce sets < 25 tonnes (Baida et al. 2020)
- Temporal shift towards more SKJ?
- Weak spatial patterns?

Stock assessment

- Reduction in PS abundance index since onset of echosounder use
 - 2012 for French Fleet
 - ?? for Spanish Fleet
- Reduction size a function of proportion of sets on owned echosounders
 - Net 2%-4% for French Fleet
 - ?? for Spanish Fleet
 - Expert opinion estimate of proportion on owned echosounders?
- Future PS abundance indexes should also account for increases in search efficiency
 - In the meantime, constant increase in fishing efficiency?

Acknowledgements

- Funded by the European project SC14 under the Framework Contract Safewaters2 (EASME/EMFF/008).
- ORTHONGEL for making their FOB tracking data available
- IRD-Ob7 pelagic observatory of the MARBEC laboratory for tropical tuna logbook, observer and trajectory data management and preparation, particularly L. Floch
- F. Marsac, V. Aragno, L. Dagorn, Y. Baidai and M. Capello for many helpful suggestions
- ICES JMS handling editor and two anonymous reviewers for constructive feedback

