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Abstract

Black marlin (Makaira indica) is commonly caught as frozen by-catch from Indonesian tuna longline fleets.
Its contribution estimated 18% (~2,500 tons) from total catch in Indian Ocean. Relative abundance indices
as calculated based on commercial catches are the input data for several to run stock assessment analyses
that provide models to gather information useful information for decision making and fishery management.
In this paper a Delta-Lognormal Model (GLM) was used to standardize the catch per unit effort (CPUE)
and to calculate estimate relative abundance indices based on the Indonesian longline dataset. Data was
collected from August 2005 to December 2020 through scientific observer program. Most of the vessels
monitored were based in Benoa Port, Bali. The result showed that Year, latitude and longitude were the
only variables remained and statistically significant in the lognormal model, whereas moon and latitude
were excluded from the delta model. The positive catch of black marlin (BLM) was allegedly influenced by
spatial (latitude and longitude) and temporal factor (year), an indication of sporadic catch instead of target-
ing. In addition, according to delta model, targeting effect (cluster) and horizontal movement (longitude)
allegedly played significant part on possibility of catching BLM. Whereas, BLM was more likely caught when
incorporated in cluster 1 (mixed targeting ALB, BET and YFT) and cluster 3 (targeting ALB). However,
high uncertainties seemed as lingering issue, which is inevitable due to low coverage of scientific observer data.
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Introduction

Black marlin (Makaira indica) is an apex predator, highly migratory species and considered as a non-
target species from indonesian industrial and small-scale tuna fishery (Nugraha and Setyadji, 2013; Sulistyan-
ingsih et al., 2011; Widodo et al., 2016). It is the second highest landed billfish species after swordfish
(Setyadji and Nugraha, 2012), and known to have high commercial value, both in the tropical and subtropi-
cal Indian and Pacific Ocean (Nakamura, 1985). In general, it mostly caught between 20°N and 45°S, but
more often off the western coast of India and the Mozambique Channel (IOTC-WPB18, 2020).

In Indian Ocean, black marlin was largely caught by gillnets (~59%), followed by longlines (~19%), with
remaining catches recorded under troll and hand lines (IOTC-WPBI18, 2020). Contribution of black marlin
from Indonesian fleet between 2014-2018 was around 10% (under 2000 tons) of total catch in Indian Ocean,
ranked fourth after Iran, India, and Sri Lanka (IOTC-WPBIS, 2020). Results of latest stock assessment as
calculated using JABBA (Parker et al., 2019), suggested that the stock is not subject to overfishing and is
currently not overfished. However, these status estimates are subject to a high degree of uncertainty and
should be interpreted with caution.

Estimations of relative abundance indices can support the use of more detailed models, which can provide
important information concerning black marlin status stock. Statistical models such as Generalized Linear
Models (GLM) can be used to “standardize” commercial catch per unit effort (CPUE) in order to calculate
relative abundance indices, which are the input data for several stock assessment models. Estimations of
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standardized CPUE of Indian Ocean black marlin are limited, especially if compared to other billfish species
as swordfish (Xiphias gladius), blue marlin (Makaira mazara), and striped marlin ( Tetrapturus audaz). Lack
of detailed data was touted to be the key factor.

The initial standardized CPUE was calculated using Japanese longline fishery statistics for 1967-1997
(Uozumi, 1998). In response to data scarcity, Indonesia proposed a scientific observer program since mid-
2005, which has been providing information concerning black marlin caught by longline boats operating in
the northeastern Indian Ocean (Setyadji et al., 2018). In this paper we used a GLM to calculate standardized
CPUE of black marlin caught by Indonesian longline fleet in the Eastern Indian Ocean. Results are useful
to assess the status of the stock of black marlin, which is an important fishery resource in the Indian Ocean.

Materials and Methods

Data Collection

This research analyzed the data gathered by the Indonesian scientific observers on commercial tuna long-
line vessels, which are mainly situated in Benoa Fishing Port, Bali. The observation program started in 2005
through an Australia-Indonesia collaboration (Project FIS/2002/074 of Australian Centre for International
Agricultural Research), and since 2012 it has been conducted by the Research Institute for Tuna Fisheries
(RITF Indonesia).

A total of 3,014 set-by-set data span in detail 1x1 degree latitude and longitude grid from January 2006
to December 2019 were obtained from Indonesia scientific observer, which covers commercial tuna longline
vessels mostly based in Port of Benoa, Bali. Fishing trips usually last from three weeks to three months.
Main fishing grounds cover from west to southern part of Indonesian waters, stretched from 75°E to 35°S
(Figure 1). It also informed concerning the number of fish caught by species, total number of hooks, number
of hooks between floats (HBF), start time of the set, start time of haul, soak time, and geographic position
where the longlines were deployed into the water.

Cluster Analysis

Cluster analysis was performed based on species composition as proposed by (He et al., 1997). Further, for
each set, the catch composition was calculated and expressed as proportions relative to the total of the four
tuna species (e.g. albacore, bigeye tuna, southern bluefin tuna, and yellowfin tuna) and five billfish species
(i.e., black marlin, blue marlin, striped marlin, sailfish, swordfish). Clustering a large dataset could be a
major stumbling block. Sadiyah and Prisantoso (2011) suggested to perform two step clustering methods,
by using non-hijerarchical k-means and followed by agglomerative hierarchical clustering. However, for this
purpose the analyses were performed using NbClust package (Charrad et al., 2014), which was intended to
perform k-means and hierarchical clustering with different distance measures and aggregation methods at
one go.

The hierarchical cluster analysis with Ward minimum variance method (“ward.D2”) followed the criterion
by Murtagh and Legendre (2014) was applied, which requires the dissimilarities to be squared before cluster
updating. It then processed to the squared Euclidean distances across 15 indices in order to select the optimal
number of clusters based on majority rule. The result then passed to CLARA (clustering large applications)
under cluster package (Kaufman and Rousseeuw, 1990).

Data Filtering

The major issue for modelling the abundance for billfishes from Indonesian tuna longline fishery was the
high proportion number of zero-catch-per-set (Setyadji et al., 2018). It was acknowledged that predominance
of zero catches could be driving the model outputs as the CPUE trends do not appear to be biologically
plausible (IOTC-WPBI16, 2018). Originally the mean annual proportion of zero catches from the data was
very high, close to 89%. In attempt to reduce it, several ways were conducted as follows:

1. Exclude 2005 data from analysis, since it was the beginning of the scientific observer program, therefore
it might contain species misidentification;

2. In general, spatial coverage of the scientific observer data covers from north eastern to south eastern
Indian Ocean, ranged from 0-33° S and 75-129° E. However, it lacks temporal coverage, especially in
the area below 208, therefore, the data trimmed only from 0-20° S to 75-129° E (northeastern Indian
Ocean);



3. Exclude sets which doesn’t contain swordfish for the whole trip.

As a result of the application of the procedures and criteria above, total number of sets used in the
analysis was 3,050 and zero catch ratio were slightly reversed to ~85%. However, the filtering process was
intended to find spatial consistency across years of observation.

CPUF standardization

A delta-gamma GLM was applied to standardize the CPUE. As the approach of Wang (2018) with some
modifications, the models were simply conducted with the main effects considered in this analysis were as
follows:

Year, set as categorical variable (2006-2020);

Quarter, set as categorical variable (1-4);

Cluster, set as categorical variable (1-3);

Moon, referred to the eight shapes of the directly sunlit portion of the moon that we can see from
Earth. The moon phase was calculated using lunar package (Lazaridis, 2014);

e. Lat/Lon, defined as georeferenced information in 5x5 degree and presented in absolute value to avoid
negative mark. Incorporated as a continuous variable in the GLM analysis.

o op

The interactions between main effects were not incorporated into the models to avoid overfitting. The
gamma and delta models were conducted as follows:
\newline Gamma model for CPUE of positive catch:

log(CPUE) = + Year + Quarter + Cluster + Moon + Lat + Lon 4 94™™¢
Delta model for presence and absence of catch:
PA = + Year + Quarter + Cluster + Moon + Lat + Lon + ¢!

We used a forward approach to select the explanatory variables and the order they were included in
the full model. The first step was to fit simple models with one variable at a time. The variable included
in the model with lowest residual deviance was selected first. As second step the model with the selected
variable then received other variables one at a time, and the model with lowest residual deviance was again
selected. This procedure continued until residual deviance did not decrease as new variables were added
to the previous selected model. Finally, all main effects and first order interactions were considered and a
backward procedure based on Akaike Information Criterion (AIC) (Akaike, 1974).

The area-specific standardized CPUE trends were estimated based on the exponentiation of the adjust
means (least square means) of the year effects (Butterworth, 1996; Maunder and Punt, 2004). The standard-
ized relative abundance index was calculated by the product of the standardized CPUE of positive catches
and the standardized probability of positive catches:

P
index = €°8(CPUE) e
14 ef

Where:
CPUE is the adjust means (least square means) of the year effect of the gamma model;
P is the adjust means (least square means) of the year effect of the delta model.

Maps were produced using QGIS version 3.14 (QGIS Developer Team, 2020) and the statistical analyses
were carried out using R software version 4.1.0 (R Core Team, 2021), particularly the package emmeans
(Lenth, 2018), and MASS (Venables and Ripley, 2002).

Results

Cluster Result

Based on majority rules (Figure 1), the optimal number of clusters was three. Cluster 1 was consisted of
mixed ALB, YFT and BET, whereas cluster 2 was dominantly filled with BET, and the biggest proportion
in cluster 3 was ALB (Figure 2).



Descriptive Statistic

Observers recorded catch and operational data at sea (after cleaning) following Indonesian tuna longline
commercial vessels from 2006-2019. The filtered dataset contained 80 trips, 2248 sets, and around 2.7 million
hooks observed, respectively (Table 1). The distribution of sets mainly gathered in area of eastern Indian
Ocean with most of the positive catches occurred in the area south of Indonesian waters, between 0°-20° S
and 75°-125° E (Figure 3).

CPUE Data Characteristics

BLM nominal CPUE series is presented in Figure 4. In general, the catches of BLM during the last decade
were fluctuating, with tendency of rising since 2014. The lowest CPUE recorded was in 2018 (0.064+-0.02), as
the highest was in 2009 (0.284-0.04). No data in 2017 and very low CPUE generated a year after was merely
caused by data limitation (low coverage), rather than loss in abundance. Whereas, most of the observation
on that particular year were conducted higher than 20° S, which included in the north-eastern Indian Ocean
area. In addition, the proportion of zero catch for BLM was quite high. As opposed to nominal CPUE, the
trend was varying annually between a maximum of 0.92% in 2008 and a minimum of 0.75% in 2020 with
average proportion 0.84% year! (Figure 5).

CPUE Standardization

Year, latitude and longitude were the only variables remained and statistically significant in the lognormal
model (Table 2), whereas moon and latitude were excluded from the delta model (Table 3). The positive
catch of black marlin (BLM) was allegedly influenced by spatial (latitude and longitude) and temporal
factor (year), an indication of sporadic catch instead of targeting. In addition, according to delta model,
targeting effect (cluster) and horizontal movement (longitude) allegedly played significant part on possibility
of catching BLM. Whereas, BLM was more likely caught when incorporated in cluster 1 (mixed targeting
ALB, BET and YFT) and cluster 3 (targeting ALB).

Overall, the standardized CPUE trend was relatively stable over time with some variations in the last
5 years. However, high uncertainties seemed as lingering issue, which is inevitable due to low coverage of
scientific observer data.
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Figure 2. Catch proportions of SWO caught by Indonesian longline fleets operated in the north-eastern Indian Ocean.
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Figure 5. Proportion of zero-catch-per-set from 2006 to 2019. The error bars refer to the standard errors.
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Figure 6. Standardized catch-per-unit-effort (CPUE) calculated using delta-lognormal model. Values were scaled by dividing
them by their means.



Table 1. Summary of observed effort from Indonesian tuna longline fishery during 2006—2020. Results are pooled and also
presented by year of observation

Year Trips Sets Total Hooks Mean Hooks se  Mean HBF se

2006 11 285 397081 1393.27  12.35 11.04 0.27
2007 7 120 159584 1329.87 19.23 14.38  0.54
2008 10 329 409116 1243.51 21.03 11.76  0.22
2009 7 219 258593 1180.79  15.42 11.30 0.35
2010 5 138 187674 1359.96 42.37 13.30  0.48
2011 3 105 110384 1051.28 16.97 12.00 0.00
2012 4 89 89538 1006.04  29.03 13.88 0.34
2013 7 210 231990 1104.71  14.11 12.40 0.15
2014 6 184 216705 1177.74  13.35 15.01 0.14
2015 5 150 174655 1164.37 11.81 14.15 0.26
2016 3 130 175868 1352.83 18.33 11.31  0.29
2018 4 157 211361 1346.25 16.00 14.90 0.22
2019 6 84 109150 1299.40 19.67 7.82  0.40
2020 2 48 65915 1373.23 17.80 13.62 0.14

Table 2. The deviance table for selected lognormal model.

Df Deviance Resid. Df Resid. Dev F Pr(>F)
NULL NA NA 318 58.1860 NA NA
Year 13 5.3300 305 52.8560  2.5002  0.0029
Lat2 1 1.4298 304 51.4262 8.7185 0.0034
Lon2 1 1.7372 303 49.6890 10.5931  0.0013

Table 3. The deviance table for selected delta model.

Df Deviance Resid. Df Resid. Dev  Pr(>Chi)

NULL NA NA 2247 1836.187 NA
Year 13 54.6699 2234 1781.517 0.0000
Quarter 3 22.3846 2231 1759.133 0.0001
cluster 3 10.2413 2228 1748.891 0.0166
Lon2 1 9.2891 2227 1739.602 0.0023
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