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a b s t r a c t

An estimate of the population growth rate (γ ) is an essential biological information that can be
input into stock assessment models to estimate management quantities for commercial fisheries.
Demographic analysis conducted using the Leslie matrix method was used to estimate γ for Indian
Ocean blue shark (Prionace glauca), with Monte Carlo simulation used to quantify uncertainty. A harvest
analysis was conducted with various selectivity patterns. The results indicated that the productivity
of the blue shark was high, with γ = 0.26–0.32 y−1 under the assumption of a one-year reproductive
cycle. The steepness of the Beverton–Holt stock-recruitment model was estimated to be 0.72 (0.24–
0.87) when the Castro and Mejuto fecundity formular was assumed, and 0.80 (0.65–0.88) when the
Fujinami et al. fecundity formular was assumed. Harvest analysis with tuna longline selectivity led
to lower sustainable harvest rates, but a higher proportion of biomass removed compared to the
selectivity patterns for other fisheries. This study provides crucial prior information on the population
growth rate and steepness parameters, which can be incorporated into stock assessments for blue
shark. Besides, harvest analysis could be a supplement for data-poor stock assessment and risk analysis,
to evaluate a tradeoff among different fisheries when considering a management strategy.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Blue shark (Prionace glauca; BSH) is one of the most common
ycatch species in pelagic tuna and swordfish longline fisheries
Nakano and Stevens, 2008; Bustamante and Bennett, 2013). It
was globally assessed as ‘‘Near Threatened’’ in the last IUCN
(International Union for Conservation of Nature) assessment. The
catch of blue shark decreased during the early 1990s due to the
worldwide ban of high-seas drift gillnet fisheries, and there has
been no significant increase in catches in the Pacific or Atlantic
Oceans thereafter (ICCAT, 2015; ISC, 2017). Blue sharks were
found to be neither overfished nor subject to overfishing in pre-
vious stock assessments in the Pacific (Takeuchi et al., 2016; ISC,
2017) and Atlantic Oceans (ICCAT, 2015).

Blue shark in the Indian Ocean was not being overfished but
may be experiencing overfishing based on the last stock assess-
ment by the Indian Ocean Tuna Commission (IOTC) in 2017 (Rice,
2017; IOTC, 2017). However, the Indian Ocean blue shark (IO BSH)
has experienced high fishing pressure in recent years, and current
catch risk might deplete the stock to overfished status relatively
quickly (IOTC, 2017). Catches of IO BSH have been recorded since
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1950’’- in the IOTC database (https://www.iotc.org/node/4108)
and increased steadily from 1950–2019.

The IOTC scientific committee (SC) has suggested using mul-
tiple assessment methods (e.g., biomass dynamics models and
age-structured assessment models) to compare estimates of stock
status for IO BSH and provide more comprehensive manage-
ment advice. Biomass dynamics models (e.g., Bayesian biomass
dynamics model) rely on a prior distribution for the intrinsic
rate of population increase (γ ), which needs to be estimated
outside the assessment model. Age structured assessment mod-
els (e.g., Stock Synthesis) often require values for the steepness
(h) of the stock-recruitment relationship (the expected propor-
tion of unfished recruitment for a stock depleted to 20% of its
unfished spawning biomass) as an input parameter, which is
also difficult to estimate inside a stock assessment model (Zhu
et al., 2012). Geng et al. (2020) have incorporated life history
nformation into Bayesian surplus production model to describe
he performance and consequence for generating the informative
rior from a basic demographic analysis where some biological
arameter (e.g. pups survival rate) were collected from operating
odel of their simulation not life history information. The aim
f their research was not to present a detailed demographic
nalysis, and female-only analysis might not reflect size and
exual dimorphism for IO BSH. The parameters of γ and h have
not been estimated for the IO BSH. Therefore, it is important to
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stimate these parameters to improve the assessment of IO BSH
nd develop management advice.
Steepness is a biological parameter defining the productivity

f a population when the spawning size decreases. Therefore,
heoretically, it can be estimated from life-history information,
ncluding maximum recruitment per spawning biomass and the
lope of the unfished stock-recruitment relationship curve (Myers
t al., 1999). Demographic analysis tends to perform better for
ong-lived and slow-growing shark species (Tribuzio and Kruse,
011). Demographic analysis with only life history information
growth curve, fecundity, and survival at age) was used to es-
imate the intrinsic rate of population increase and steepness
f elasmobranch species in the Pacific and the Atlantic Oceans
e.g., Takeuchi et al., 2005; Chen and Yuan, 2006; Tsai et al.,
010; Cortés, 2016). However, no demographic model has been
eveloped for IO BSH to estimate γ and related parameters.
The objectives of this study were to (1) estimate γ and quan-

ify the uncertainty of the estimate, (2) estimate steepness; and
3) investigate the influence of harvesting scenarios on achieving
stationary population trajectory for IO BSH. Uncertainty about

he estimate of natural motility (M), a parameter of the demo-
raphic model, is a major source of uncertainty in this study.
herefore, we used several empirical methods to estimate M and
ccounted for the uncertainty in the resulting estimates in the
nalyses.

. Material and methods

.1. Demographic method

Demographic analysis can be conducted using age- or size-
tructured population dynamics models and can be either female-
nly or for both sexes (Tsai et al., 2014). A two-sex Leslie popu-
ation projection matrix (Caswell, 2006; Yokoi et al., 2017) was
sed to represent the demography of the IO BSH:

t+1 = MHNt (1)

where Nt is the vector of numbers at each age in year t, and H
s the harvest (or exploitation) matrix. For demographic analysis,
equal to 1 means unfished status; And for harvest analysis, H

an be represented by the harvest survival rate (proportions of
ndividuals surviving harvest). The matrix M is a Leslie population
rojection matrix:

=
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(2)

here Sx is the annual natural survivorship of age x for male (m)
nd female (f ). The Fx elements represent the age-specific per-
apita fecundity rates. The p is the sex ratio in out study, and
qual to 0.5 for the Indian Ocean blue shark (Coelho et al.,
018). A birth-pulse population and a post-breeding census were
ssumed (Caswell, 2006). Accordingly, the first age class (age
2

) is represented by the newborn pups, and the fecundity (Fx)
terms include the probability that a pregnant female survives and
delivers pups at the end of the year (e.g, Fx = LxSx, where Lx is the
verage number of female pups per female or male). The values
or the Lx were calculated as the number of pups per individual,
hich was then divided by the length of the reproductive cycle

n years.
Lx can be calculated by Eqs. (3) and (4) (Caswell, 2006; Yokoi

t al., 2017), and we assumed monogamy and an equal litter size
or both sexes (Tsai et al., 2014):

x,sex =

⎧⎪⎪⎨⎪⎪⎩
kxRf

Rf + Rm
sex = f

kxRm

Rf + Rm
sex = m

(3)

Rsex =

xmax∑
x=1

Matxnx,sex (4)

here Matx is an knife-cut value(0 or 1) for maturation age and
ge-at-delivery of male and female respectively (e.g., if the age
xceed maturation age, Matx = 1; else Matx = 0), kx is the litter

size at age x, and nx,sex is the relative number of individuals of age
x and sex when population achieved stable stage. We generated
the initial population of vector given by uniform random numbers
nx,sex ∼U[0,1], and calculated 3000 times stable projection matrix
y repeated multiplication. More detail about how to calculated
x,sex can be found by Yokoi et al. research (2017).
According to matrix algebra MNt = λN t , where λ is the eigen-

alue of matrix M. Therefore, λ is the finite rate of population
ncrease, and γ = ln λ is the intrinsic rate of population increase.
he value of λ is determined by finding the dominant eigenvalue
f M (Simpfendorfer et al., 2005). The underlying assumption
f the matrix model (Equations and 2) is that the population
ill grow exponentially and reach a stable age distribution (sad)
Caswell, 2006). Therefore, to estimate γ and its uncertainty, sev-
ral biological parameters (e.g., growth and longevity) and their
ncertainty need to be estimated, as described in the following
ections.
The Beverton–Holt (B–H) and Ricker models are two conven-

ional stock-recruitment relationships. The B–H model is based on
he assumption of density-dependent mortality rather than abun-
ance-dependent mortality. Based on Kai and Fujinami (2018)
nd previous stock assessments (Rice, 2017), it is reasonable to
elect the B–H model to estimate recruitment for blue shark. We
ollow Myers et al. (1999) and calculate the steepness h of the
–H stock-recruit model using parameters from the demographic
nalysis:

ˆ = α · SPRF=0 (5)

h =
α̂

4 + α̂
(6)

where represents the number of spawners produced by each
spawner over its lifetime, SPRF=0 is the spawning biomass-per-
recruit at unfished equilibrium population size(obtained from
R0), and is the slope of the population at the origin(extremely
low population size). For the B–H stock-recruitment curve, the
also referred to the maximum density-independent survival, and
could be derived from recruits and spawners (or pups). Therefore,
Brooks et al. (2010) showed that for sharks where eggs could be
counted, is equivalent to first-year (pups) survival. More theo-
retical and analytical details about estimation of steepness could
be found in researches of Myers et al. (1999) and Brooks et al.
(2010). All demographic and simulation analyses were coded in
the R language for statistical computing.
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Fig. 1. Uncertainty in the life-history parameters (best estimates of 95% confidence intervals) for Indian Ocean blue shark: A, Length-at-age; B, Longevity; C,
Age-at-delivery; D, Fecundity-at-age (Litter Size-Age model).
2.2. Life-history parameters and uncertainty

2.2.1. Growth and longevity
Few studies focused on the age and growth of IO BSH. Andrade

t al. (2019) and Jolly et al. (2013) estimated the parameters of
he von Bertalanffy growth model for this stock, with the latter
eing based on samples from the coastal areas of South Africa,
hich are unlikely to be representative of the entire IO BSH
opulation.
Therefore, the growth parameter (and 95% CI) estimates for

emales and males from Andrade et al. (2019) (Fig. 1A) were used
n this study: L∞ = 319.7 (291.1–371.8) cm, k = 0.084 (0.058–
0.111) y−1, and L0 = 64.1 (46.1–80.5) cm for female; L∞ = 302.0
(287.6–321.2) cm, k = 0.1 (0.084–0.121) y−1, and L0 = 61.9
(49.4–73.3) cm for male.

Nakano and Stevens (2008) provided an estimate of longevity
(tmax) of 20 yr for IO BSH. However, Andrade et al. (2017) reported
the oldest individual was 25 years in the Indian Ocean. To in-
tegrate the uncertainty about longevity, we assumed a discrete
uniform distribution of U [20, 25] for tmax (Fig. 1B).

The weight (W, kg) and fork length (FL, cm) relationship for
female blue sharks was assumed to follow that of Romanov and
Romanova (2009) (Eq. (7)) :

W = 0.835 × 10−5
× FL2.972 (7)

2.2.2. Maturity and reproduction
Pratt (1979) found that female blue sharks generally first

become pregnant before five years of age and full sexual maturity
is achieved at a 185 cm fork length (FL), which translates to 6 or
7 years using juvenile growth curves (Aires-da-Silva and Gallucci,
2007; Henderson et al., 2001). Sexual maturity is attained at
about 4 - 7 years for males (Nakano, 1994; Jolly et al., 2013).
In this study, age-at-maturity was replaced by age-at-delivery,
which represents the age at which females first produce pups,
i.e. the age-at-maturity plus the gestation period (∼12 months
3

for this species). Reproduction studies in the Atlantic Ocean all
favor an annual reproductive cycle (RC), both for the re-examined
North Atlantic (Pratt, 1979) and the South Atlantic (Hazin et al.,
1994; Montealegre-Quijano, 2007) and the Pacific Ocean (Fuji-
nami et al., 2017; Nakano and Stevens, 2008). We thus assumed
a one-year RC in this study. We assumed a discrete uniform
distribution of U (6, 8) for the age-at-delivery of females (Fig. 1C),
and U[4, 7] for the age-at-maturity of males. Fecundity is an
essential parameter for demographic analysis. Castro and Mejuto
(1995) found a positive linear relationship between fecundity
(litter size, LS) and fork length for blue shark, i.e.:

LS = −91.97 + 0.6052 × FL (8)

To cover more uncertainty of the life history information for blue
shark, another fecundity formula (Eq. (9)) was included in this
study (Fujinami et al., 2017).

LS = −45.64 + 0.4232 × FL (9)

We used Eqs. (8) and (9), and the growth function of Andrade
et al. (2017) to generate a relationship between litter size and
age (hereafter litter size-age model; Fig. 1D). The sex ratio at
birth was assumed to be 1:1, as suggested by several studies
(e.g., Hazin et al., 1994; Castro and Mejuto, 1995). Input life
history information and their references were list in Table 1.
2.2.3. Natural mortality and survival rate

Age-specific survival rate (St) is defined as:

St = e−Mt (10)

where Mt is the (instantaneous) natural morality for age t. Nat-
ural mortality is often difficult to estimate so it is often the
primary source of uncertainty in population dynamics modeling.
Consequently, we considered four empirical methods to estimate
M:

(1) The Then et al. (2015) method, which updated Hoenig’s
(1983) method, i.e., M = 4.899t −0.916;
max
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able 1
nput life history information of the Indian Ocena blue shark.
Parameter Value Reference

Female Male

L∞(cm) 319.7 (291.1–371.8) 302.0 (287.6–321.2) Andrade et al. (2017)
k ( y−1) 0.084 (0.058–0.111) 0.1 (0.084–0.121) Andrade et al. (2017)
L0 (cm) 64.1 (46.1–80.5) 61.9 (49.4–73.3) Andrade et al. (2017)

Longevity (yr) U[20, 26] Andrade et al. (2017)

Weight (kg)-at-length (cm) W = 0.835 × 10−5
× FL2.972 Romanov and Romanova (2009)

Age-at-delivery (yr) U[6, 8] NA Pratt (1979)
Age-at-maturity (yr) NA U[4, 7] Pratt (1979), Hazin et al. (1994) and Montealegre-Quijano (2007)

Fecundity (litter size) LS = −91.97 + 0.6052 × FL Castro and Mejuto (1995)
LS = −45.64 + 0.4232 × FL Fujinami et al. (2017)

Reproductive cycle
Henderson et al. (2001)

One-year Aires-da-Silva and Gallucci (2007)
Fujinami et al. (2017)
A
2

a
i
d
i
c
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h
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t

(2) The Jensen (1996) method, which estimatesM based on the
ge-at-maturity(tmat ; the age-at-delivery less gestation period),
.e., M =

1.65
tmat

;
(3) The Chen and Watanabe’s (1989) method, which estimates

M based on a relationship between M and the growth parameters
including their uncertainty) and age at maturity.

Methods (1) - (2) calculates an age-independent value for M
while method (3) calculate age-specific M values.
2.2.4. Accounting for uncertainty

The consequences of uncertainty regarding the life-history
parameters were captured using Monte Carlo simulation. This
involves estimating the distribution of M (age-invariant or age-
specific) for each method from the sampling of life history pa-
rameters (e.g. Linf , L0, age-at-maturity, longevity, etc.) in their
distribution, each set ofM being calculated from once sampling. A
total of 4000 vectors of M-at-age (referred to as ‘‘ALL methods’’)
were obtained based on 1000 vectors for each method. Except
estimation of each set of M mimic the uncertainty from the
life history, and nx,sex, an vector parameter for calculating the
fecundity per age by sex, would be influenced by this sampling
as well.

Triangular distribution (probability density functions, pdf ) was
assumed for annual survival at age (Caswell, 2006). The trian-
gular distribution can be used to represent the uncertainty in
life-history parameters before stochastic demographic analysis is
conducted (Cortés, 2002, 2008). This distribution is particularly
convenient because it allows a lower and upper bound for the
parameter and the assignment of a most likely value between
this range(Aires-da-Silva and Gallucci, 2007). Although lognorm
distribution had been selected as an alternative distribution in
some study, it usually lead to a similar result, especially for the
measures of central tendency (Cortés, 2002; Aires-da-Silva and
Gallucci, 2007). Therefore, only triangular distribution was used
in this study.

For each age, the lowest and highest estimates of survival rates
derived from the above 4,000 M estimates were taken as the
bounds, and the mean value was assumed as the most likely value
in the triangular distributions. The pdfs calculated was used as the
survival rates in this demographic analysis. Beside, scenario one
and two used fecundity formulas of Castro and Mejuto (1995) and
Fujinami et al. (2017) to reflect uncertainty respectively.
2.2.5. Scenarios of demographic analysis

The key output of the demographic analysis is the intrinsic
rate of population increase (γ ). The uncertainty of γ arises from
the uncertainties in the life-history parameters. In this study, two
scenarios were developed to investigate the impacts of uncer-
tainty about survivorship on the estimates of γ , i.e., the triangular
4

Fig. 2. Selectivity curves for Indian Ocean blue shark.

distribution for scenario one and lognormal distribution for sce-
nario two. For each scenario, 10,000 Monte Carlo simulations
were run by sampling from the generated life-history parameters
and hence maturity-at-age, fecundity-at-age, maximum age, and
age-at-maturity Distributions for four demographic parameters,
i.e., the intrinsic rate of population increase (γ ), net reproductive
rate (R0), generation time (G), and population doubling time
(tx2) were estimated based on the methods and definitions in
ires-da-Silva and Gallucci (2007).
.2.6. Harvest analysis
Demographic analysis is different from traditional full stock

ssessment since the input is only biological information and
t cannot make the harvest control rule or total annual catch
irectly. However, harvest analysis can be used to investigate the
nfluence of the different management strategy. The principle is
hanging harvest survival rate based on different management
trategy, and finding a maximum harvest rate (HMSY) leading to a
equal to one where the stock can be sustained. Given the actual
arvest rate by age is the product of the HMSY and selectivity per
ge, HMSY might exceed 100% for some fisheries, however actual
arvest rate per age would be limited to a value lower than 1.
Demographic analysis commonly assumes knife-edged selec-

ivity at an age-at-first-capture (tc) when conducting projections
(e.g. Aires-da-Silva and Gallucci, 2007). Such selectivity curves
might be appropriate for gillnet (when catching small pelagic
fish) and trawl fisheries. However, for longline fisheries, a key
source of mortality for IO BSH, are often assumed to have dome-
shaped selection patterns. According to the latest assessment of
IO BSH (Rice, 2017) and IOTC annual report (IOTC, 2017), three
fleets, pelagic longline targeting swordfish (SWO_LL) and tuna



Z. Geng, Y. Wang, R. Kindong et al. Regional Studies in Marine Science 41 (2021) 101583
Fig. 3. The mean of survivorship by sex (thick line) estimated by different methods with 95% confidence intervals (the gray area represents uncertainty around ‘‘All
methods’’).
(TUNA_LL), and coastal gillnet (refer to MISC_GL), has generally
been considered as major fisheries for IO BSH. In this study,
selectivity for these three fleets was based on Rice (2017) (Fig. 2).

Narrow selectivity patterns such as TUNA_LL might result
in extremely high harvest rates for full-selected animals. It is
appropriate to include an alternative to evaluating the influence
of fishing on the entire population size an adjusted stationary
harvest (proportion removed, PR) was computed (Breen and Cook,
2002),

PRj =

tmax∑
a=1

Sela,j ∗ usa,j ∗ sada,j (11)

where Sela,j is the percentage of selectivity of fleet j at age a, and
sad is the percentage of age structure under stationary harvest.
3. Results

3.1. Natural mortality estimate

The natural mortality estimates from different methods are
shown in Fig. 3. The methods of Chen and Watanabe lead to
higher estimates of natural mortality for younger individuals. The
range of the mean (overage) of M from various methods was
0.11–0.28 y−1 and 0.12–0.32 y−1 for female and male respectively
(animals older than five years). The natural mortality rate for
females of age 0 (M0) estimated using the ‘‘Chen and Watanabe’’
and ‘‘ALL methods’’ were 0.80 y−1 and 0.45 y−1, and for male
were 0.81 y−1 and 0.46 y−1 respectively. For the uncertainty
around ‘‘All methods’’, males have higher uncertainty than fe-
male, especially for the larger upper bound of the 95% confidence
intervals.

Fig. 3 showed the probability distribution of survivorship at
ages 0 to 5 years, and 24 to 25 years estimated from ‘‘ALL meth-
ods’’, suggesting there is no noticeable change with increasing age
above age 3(Fig. 3). For both sex, the greatest variance was the
same for ages zero, and the least variance was the same for age
two as well.

3.2. Demographic analysis

The estimates of demographic parameters for IO BSH are listed
in Table 2. It is interesting to note that when assuming the Castro
and Mejuto (1995) fecundity formular (scenario one), the net
reproductive rate (R0) and γ were significantly lower than those
in scenario two, equal to 21.16 and 0.26, respectively. When
5

Fig. 4. Probability distributions of γ in different scenarios.

Table 2
Result of demographic parameters for Indian Ocean blue shark.
Parameters Scenario 1 Scenario 2

Mean Lower Upper Mean Lower Upper

γ 0.26 0.14 0.38 0.33 0.22 0.43
R0 21.16 2.08 42.44 28.24 12.37 45.24
G 11.04 3.17 14.98 10.23 8.67 11.96
tx2 2.82 1.83 5.04 2.21 1.65 3.20

Lower and Upper denote the lower and upper bounds of the 95% confidence
interval respectively.

Fujinami et al. (2017). fecundity formular was assumed, G and tx2
increased and decreased, respectively. The distribution of γ for
each scenario is shown in Fig. 4. Scenario 2 will lead to a higher
and more narrow distribution for γ ; the most probable values for
γ were 0.26 and 0.33 estimated by scenario 1 and 2, respectively.

The estimated steepness (95% CI) was 0.72(0.24–0.87) for sce-
nario 1 and 0.80 (0.65–0.88) for scenario 2. The Fujinami et al.
(2017) fecundity formular would lead to an obvious increase in
steepness estimates (Fig. 5).

3.3. Harvest analysis

The distribution of stationary harvest rates and the proportion
removed associated with each fishery are shown in Figs. 6–7,
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Fig. 5. Probability distributions of steepness h from different scenarios.

espectively. Scenario 2 can lead to higher estimation than the
cenario 1, but due to the similar trend between them and just
ifferent magnitude, we only describe the results based on Sce-
ario 1 here and more detailed result can be found in Table 3. For
cenario 1, the highest stationary harvest rate (mean = 0.75; 95%
I: 0.31–1.35) was obtained by fishery MISC_GL. TUNA_LL (mean
0.39; 95% CI: 0.24–0.49) and SWO_LL (mean = 0.83; 95% CI:

.30 – 1.83) had similar mean values, however, the former had a
ore narrow range of value.
Comparing the proportion removed of the number of blue

hark when fleets operated at their harvest rate, the TUNA_LL
aptured significantly more (mean = 0.13; 95% CI: 0.09–0.16)
han MISC_GL (mean = 0.09, 95% CI: 0.05–0.12) or SWO_LL (mean
0.05, 95% CI: 0.03–0.08), which were similar and had upper

imits less than 0.1.

. Discussion

.1. Natural mortality

As for many aquatic species, estimation of natural mortality
or blue shark relies on empirical methods. The estimates of M
(across age and maturity status) for adult female IO BSH were
0.11–0.28 y−1 and for adult male were 0.12–0.32 y−1, close to the
estimates in other areas. For example, Nakano (1994) estimated
the M for blue shark in the North Pacific Ocean to be 0.17–0.21
y−1, while, the M was estimated at 0.20 y−1 by Takeuchi et al.
6

(2005) and 0.24 y−1 by Chen and Yuan (2006) for blue shark in
the Atlantic.

Branstetter (1990) showed that young blue sharks tend to
have higher natural mortality than older animals; therefore, the
assumption of age-independentM may not be realistic. The meth-
ods of Chen and Watanabe (1989) produced quite a different
estimate of M for young blue sharks, e.g., M0 = 0.80 y−1 and 0.81
y−1 for female and male, respectively. Integrating three methods
for estimating M led an average value of 0.45–0.46 y−1, higher
than that estimated by Aires-da-Silva and Gallucci (2007) (0.4
y−1) for blue shark the North Atlantic.

4.2. Population growth rate and steepness

This study is the first to estimate the population growth rate
for IO BSH using a demographic method. Geng et al. (2020)
has conducted a demographic analysis for IO BSH to make a
simulation test, however them get the pups survival rate from
steepness through know operating model not indirectly from the
real life history information. IO BSH was found to be relatively
productive, with an intrinsic rate of population increase of 0.26–
0.33. As γ is equal to λ (finite rate of population increase) after
log-transformation (Caswell, 2006), λ of the IO BSH was estimated
to be 1.30–1.39. Using the demographic approach, Takeuchi et al.
(2005) and Chen and Yuan (2006) estimated γ for blue shark in
the North Atlantic Ocean to be 0.34 y−1 and 0.35 y−1, respectively.
Aires-da-Silva and Gallucci (2007) considered a scenario with a
two age-stage(juvenile and adult) M similar to this study, result-
ing in a lower γ . The demographic analysis was used to estimate
that the λ of shortfin Mako (1.05–1.08) and pelagic thresher shark
(1.06) in the northwest Pacific (Tsai et al., 2010, 2014) was lower
than the λ of blue shark in this study.

The difference in estimates for Atlantic blue shark may relate
to growth parameters, i.e., h = 0.73 for North Atlantic blue shark
with L∞ = 310.8 cm and h = 0.53 for South Atlantic blue shark
with L∞ = 246.0 cm (Cortés, 2016). A higher growth rate tends
to lead to a greater steepness. Rosa and Coelho (2016) also found
that steepness was higher when assuming a uniform distribution
of litter size (U [36.7–37.1]) than when using Equation 5 of
Castro and Mejuto (1995) method. The best estimate of steepness
occurred at h = 0.5 in the most recent stock assessment for
IO BSH, which was based on the Stock Synthesis model(Rice,
2017). Kleiber et al. (2009) assumed a low steepness of 0.70 in
assessing the North Pacific blue shark using MULTI FAN-CL and
Takeuchi et al. (2016) assumed steepness values of 0.4–0.8 when

assessing the blue shark of the western and central Pacific Ocean.
Fig. 6. Probability distributions of stationary harvest rate by fishery.



Z. Geng, Y. Wang, R. Kindong et al. Regional Studies in Marine Science 41 (2021) 101583

T
C

Table 3
Result of harvest analysis for the Indian Ocean blue shark.
Parameter Fleets Scenario 1 Scenario 2

Mean Lower Upper Mean Lower Upper

Harvest rate
MISC_GL 0.75 0.31 1.35 1.01 0.55 1.56
TUNA_LL 0.39 0.24 0.49 0.44 0.34 0.52
SWO_LL 0.83 0.30 1.83 1.18 0.55 2.16

Proportion removed
MISC_GL 0.09 0.05 0.12 0.10 0.07 0.14
TUNA_LL 0.13 0.09 0.16 0.14 0.12 0.16
SWO_LL 0.05 0.03 0.08 0.07 0.05 0.09
Fig. 7. Probability distributions of proportion removed with a stationary harvest rate.
he mean steepness obtained in the current study was 0.72 for
astro and Mejuto (1995) method and h = 0.80 for Fujinami et al.

(2017) methods. This study suggests that demographic analysis
can provide an alternative way to estimate steepness, which is
often difficult to estimate with formal stock assessment models. It
should also be noted that the uncertainty around estimates needs
to be further investigated using ground-truth based simulation
studies.

4.3. Demographic method in support of stock assessment

We found that tuna longline fisheries (TUNA_LL), which are
more selective for juvenile blue sharks than the other fisheries,
can lead to a lower HMSY. This implies that fishing with longline
fishery only leads to a lower fishing mortality corresponding to
MSY, compared with other fisheries. Afterword, we used selec-
tivity and its reflected stable age structure to calculate the actual
proportion removed of the stock (Fig. 7). This revealed that the
tuna longline can keep stock stable with the highest propor-
tion removed. The harvest analysis indicated that the survival
of the juvenile segment (0–4 years) is the key factor driving
productivity for long-lived species, especially for sharks (Cortés,
2002). Although pelagic longline fisheries which mostly target
tuna would lead to relative high fishing pressure on juveniles,
their narrow selectivity could still maintain productivity due to
their low selectivity for matured biomass.

Along with elasticity analysis, the demographic method can
provide supporting information for fishery management and con-
servation measures (e.g., setting size limits of capture and annual
harvest rates; (Tsai et al., 2014). However, in most situations,
it is not possible to make use of fishery-dependent data di-
rectly (e.g., catch data, tagging data) without the stock assess-
ment model. Fortunately, the demographic method can be used
to develop the prior distribution for critical parameters of a
stock assessment (e.g., the intrinsic rate of population increase),
7

which are necessary for Bayesian stock assessment (McAllister
et al., 2001). Biomass dynamics models and related data-poor
approaches such as the Catch-MSY model (Martell and Froese,
2013) and stock reduction analysis (Kimura et al., 1984) can also
integrate biological information with demography.
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