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Summary 

   Anomalous sea temperature changes could have direct impacts on fish spatial distribution 

and stock dynamics. Large-scale climate fluctuations as one of the major reasons causing 

temperature changes has attracted extensive attention. However Indian Ocean Dipole (IOD), an 

ocean-atmosphere interaction causing interannual climate variability, has not been largely 

explored. And few of studies tested whether IOD have different effects between different tuna 

species and whether IOD have spatially distinct influences on one single tuna species. This study 

adopted public longline fishery data and spatial structure carried by IOTC comparing the 

differences of IOD impacts between bigeye tuna and yellowfin tuna. Results found that IOD 

event have significant influence on bigeye tuna only in the tropical western Indian Ocean. For 

yellowfin tuna, IOD showed significant effects on catch per unit effort (CPUE) both in tropical 

western and eastern Indian Ocean. And indicators showed that IOD have more significant 

influence on yellowfin tuna than bigeye tuna. In the south Indian Ocean, both for bigeye tuna and 

yellowfin tuna, IOD didn’t show obvious relationship with CPUE. 
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1. Introduction 

Large-scale climate fluctuations are important factors affecting fish population dynamics, 

altering their spatial distributions and productivity. The most important change is ocean 

temperature which could have direct impacts on fish distribution, growth, reproduction, etc. In 

response to changing temperature conditions, fish may move or shift to deeper waters to track the 

same water temperatures. Within US waters in the northwest Atlantic, commercial fish stocks 

like alewife, silver hake and red hake showed clear poleward shifts which closely associated with 

Atlantic Multidecadal Oscillation (AMO) positive events in the late 1990s and 2000s (Nye, Link, 

Hare, & Overholtz, 2009). The longitudinal gravity of fishing grounds of skipjack tuna in the 

western and central Pacific Ocean varied by up to 40° of longitude between strong El Niño and 

La Niña events (P. Lehodey, Bertignac, Hampton, Lewis, & Picaut, 1997). Demersal fish 

assemblage in the North Sea deepened by about 3.6 m per decade as bottom temperature get 

warmer (Dulvy et al., 2008).  

Temperature is also an important spawning cue generating large effect on the recruitment 

success of populations (Houde & Hoyt, 1987; Rijnsdorp, Peck, Engelhard, Möllmann, & 

Pinnegar, 2009). Recruitments of tropical skipjack tuna and yellowfin tuna in the Pacific Ocean 

became higher during El Niño events. Whereas subtropic albacore had lower recruitment during 

El Niño and higher recruitment during La Niña (Patrick Lehodey, Chai, & Hampton, 2003). Reef 

fishes in the western central Atlantic Ocean showed lower fecundity, smaller eggs or reduced 

pairing with temperature increase caused by climate change (Pratchett, Wilson, & Munday, 

2015). 

Due to the interaction of the sea surface temperature (SST) and winds, climate aberrations 

also occurred in the Indian Ocean defined as Indian Ocean Dipole (IOD)(N. Saji, B. Goswami, P. 

Vinayachandran, & T. Yamagata, 1999; Saji & Yamagata, 2003). IOD events characterized the 

SST anomaly change associating with wind direction and precipitation deviations. IOD event 

experiences two phases: positive and negative. When the positive event, SST turns cooler in the 

eastern Indian Ocean (EIO) couples with a westward wind anomaly along the equator resulting 

in warmer SST in the western Indian Ocean (WIO). The IOD in the negative phase shows the 

opposite way: SST becomes anomaly cooler in the western Indian Ocean and warmer in the 
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eastern Indian Ocean (Feng & Meyers, 2003; N. Saji et al., 1999). Yellowfin tuna (Thunnus 

albacares) and bigeye tuna (Thunnus obesus) are the principal commercial target species 

accounting for 42.2% and 9.3% of the tropical tunas’ total harvest in the Indian Ocean 

respectively (IOTC, 2020). Yellowfin tuna and bigeye tuna were both distributed in the sea 

pelagic layer. However, yellowfin tuna generally spread in the mixing layer or at the top of the 

thermocline (Brill et al., 1999). Both temperature and dissolved oxygen can affect the vertical 

distribution of yellowfin tuna (Cayré & Marsac, 1993; Song, Zhang, Xu, Jiang, & Wang, 2008). 

Different from yellowfin tuna, bigeye tuna has higher O2 affinity that can adapt to the lower 

temperature (Lowe, Brill, & Cousins, 2000). Therefore, the habitats of bigeye tuna are usually 

deeper than yellowfin tuna (Dagorn, Holland, & Itano, 2007; Holland, 1990). Based on the 

different habitats, we hypothesize IOD events may have different influences on bigeye tuna and 

yellowfin tuna. 

Previous studies found that catch rates of yellowfin tuna of longline fisheries in the WIO 

decreased when positive IOD events along with fishing grounds were restricted to the northern 

and western margins of the WIO. When negative IOD events, catch rates increased and fishing 

grounds expanded into central regions of the WIO (Lan, Evans, & Lee, 2012). In the EIO, catch 

rates of longline bigeye tuna fisheries became higher in the positive IOD events (Lumban-Gaol 

et al., 2015). However, these studies mostly focused on effects of climate index on single tuna 

species, and few of them tested whether different tuna species responded differently. 

Furthermore, it is largely untested whether climate index could have spatially distinct effects on 

a single tuna species. To address these research gaps, we aim to investigate whether IOD events 

have different effects on bigeye tuna and yellowfin tuna, and whether the impact of IOD on the 

same tuna species is distinct in different areas of the Indian Ocean. Specifically, our research 

area covered the whole Indian Ocean and divided the Indian Ocean based on the spatial 

structures carried by Indian Ocean Tuna Commission (IOTC). 

2. Materials and methods 

2.1 Spatial structure 

         Spatial region of bigeye tuna was stratified into four regions by IOTC: western equatorial 

region which was partitioned into south equator area (R1S) and north equator area (R1N), 

eastern equatorial region (R2) and southern region (R3)(Fu, 2019). Considering longline 
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fisheries of bigeye tuna mainly focused on EIO(Pillai & Satheeshkumar, 2012), we combined 

western area R1N and R1S as R1 in this study (Fig.1) .Yellowfin tuna stock assessment model 

adopted four regions structure which is different from bigeye tuna: western equatorial region 

(R1), eastern equatorial region (R3) , southern area divided into west-south area (R2) and east-

south area (R4) showed in Fig.2 (Urtizberea et al., 2019). 

2.2 Fishery data 

   Longline catch and effort data for yellowfin tuna and bigeye tuna were available from IOTC 

public datasets by month from 2000 to 2019 (https://www.iotc.org/data/datasets). The data sets 

contain fishery data in 5°×5° resolution (effort by number of hooks, catch by numbers) and 

operational data (fishing date and area coordinates). Spatial and temporal distribution of nominal 

CPUE of bigeye tuna and yellowfin tuna were shown in Fig.1. 

2.3  Indian Ocean Dipole 

       IOD phenomenon is expressed as Dipole Modular Index (DMI), which is represented by 

anomalous Sea Surface Temperature (SST) gradient between the western equatorial Indian 

Ocean (50°E-70°E and 10°S-10°N) and the southeastern tropical Indian Ocean (90°E-110°E 

and 10°S-0°N). Positive DMI is referred as positive IOD, negative DMI represent negative IOD 

phenomenon. DMI was obtained from the Japan Agency for Marine-Earth Science and 

Technology (JAMSTC) website (http://www.jamstec.go.jp/frcgc/research/d1/iod/) from 2000 to 

2019 by month.  Each month has one value for the entire Indian Ocean, and the distribution of 

DMI shows in Fig.2. 

2.4 Statistical analyses 

To examine the significant of IOD effects, we used two indicators. 1) First indicator based 

on the Akaike information criterion (AIC). Generalized Additive Model (GAM) (Hastie, 2017) 

was used to analyze the effects of IOD events on catch rates of yellowfin tuna and bigeye tuna 

in the Indian Ocean. AIC provide the standard to select the best fitting model. Lower AIC means 

better model. Nominal CPUE as response variable was calculated by the number of catches 

captured per 1000 hooks. Independent variables included: temporal factors (year, month), spatial 

factors (longitude, latitude), and DMI index. We set “year + month + s (latitude) + s (longitude)” 

as “base model” (1) and added “s (DMI)” as “DMI model” (2). We ran the base model and DMI 

model for each subarea and the whole Indian Ocean. In each area, the AIC of DMI model lower 

https://www.iotc.org/data/datasets
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than base model and ΔAIC > 2 as the criterion to determine DMI has a significant influence on 

CPUE(Burnham & Anderson, 2002). GAM model was defined as: 

g (CPUEbet/yft + c) ~ Year+ Month + s1 (Latitude) + s2 (longitude) + ε                       (1)  

       g (CPUEbet/yft + c) ~ Year+ Month + s1 (Latitude) + s2 (longitude) +s5 (DMI) + ε         (2)  

   Where g () is the link function, sn is the smooth function for the explanatory variables. 

CPUEbet/yft are the nominal CPUE of yellowfin tuna and bigeye tuna. The constant c is 10% of 

the mean of nominal CPUE which was assumed to account for zero catch values in the data. ε is 

a random error.  

2) Second indicator based on the p -value test for DMI model. p value of DMI index below 

0.05 was considered significant. In conclusion, p <0.05 and ΔAIC > 2 as the criterion to 

determine DMI has a significant influence on CPUE. 

GAM constructed in the R software (version 3.6.1) using “mgcv” package, with the 

distribution family = “gaussian” and method = “REML” for smoothing parameter estimation. To 

avoid the multicollinearity problems which undermines the statistical significance of 

independent variables, we calculated the Variance Inflation Factor (VIF) for each predictor. VIF 

below 10 indicated the factor is effective (Menard, 2002). 

3. Results 

3.1 Spatial and temporal distribution of nominal CPUE of yellowfin tuna and bigeye tuna and 

temporal variation of DMI index 

The spatial distribution of CPUE showed that higher catch rates of yellowfin tuna 

distributed in the western Indian Ocean, while higher catch rates of bigeye tuna mainly 

distributed in the middle and eastern Indian Ocean (Figure 1a,1b). CPUE of bigeye tuna for the 

whole Indian Ocean showed an overall steady trend. In R1 and R2, CPUE kept similar level from 

2000 to 2013, after that the CPUE of R2 increased gradually and exceeded CPUE in R1. CPUE 

in R3 remained the lowest value with small fluctuations (Figure 1c). CPUE of yellowfin tuna in 

the Indian Ocean declined from 2005 to 2012, but then regained similar level as 2000. CPUE in 

R1 plunged significantly in 2005 and get lower than CPUE in R2 from 2006. CPUE in R3 and 
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R4 kept the lowest value and showed an overall slightly decease trend from 2000 to 2019 (Figure 

1d). 

     DMI index in the positive and negative phase were almost equal from 2000 to 2006. After 

that, negative dipoles occurred less than positive dipoles (Figure 2). 

3.2 DMI effect on the bigeye tuna and yellowfin tuna 

VIFs of variables were less than 10 indicating DMI was effective in GAM models of bigeye 

tuna and yellowfin tuna (Table1). The histograms and QQ-plots of model residuals of bigeye 

tuna and yellowfin tuna are shown in appendix which followed normal distribution suggesting 

the model assumptions were appropriate. 

In the whole Indian Ocean, DMI have significant influence both on bigeye tuna and 

yellowfin tuna. In the model of bigeye tuna, p value of DMI equal 0.028 which is below 0.05. 

The ΔAIC of DMI model and base model is 7.5 which higher than 2. The p value (p < 0.001) and 

ΔAIC (21.3) of yellowfin tuan which showed more significant influence on CPUE than bigeye 

tuna (Table 1). The influence plot of DMI of bigeye tuna indicated DMI have positive influence 

when DMI between -0.3 to 0.3 and negative influence when DMI below -0.3 or over 0.3 (Figure 

3a). DMI have positive influence on yellowfin tuna when DMI under 0.1 and then turned to 

negative as DMI increased (Figure 3b). 

Similar with the whole Indian Ocean, DMI have significant influence both on bigeye tuna 

and yellowfin tuna in the western equatorial Indian Ocean. Model of yellowfin tuna, which 

indicated a strong effect on CPUE (p < 0.001, ΔAIC= 57.8), also showed that had more 

significant influence than bigeye tuna (p = 0.0005, ΔAIC= 15.4) (Table 1). The influence plot of 

bigeye tuna indicated that DMI have positive influence when the value lower than 0.2 and turn to 

negative beyond 0.2 (Figure 3c). For yellowfin tuna, CPUE responded an overall decrease non-

linear trend with fluctuations between -0.4 ~ 0.3. In general, similar with bigeye tuna, DMI have 

positive effect when DMI under 0 and negative effect when DMI beyond 0 (Figure 3d).  

DMI also have significant influence on yellowfin tuna as p < 0.001 and ΔAIC = 14.4 in the 

eastern equatorial Indian Ocean (Table 1). However, for bigeye tuna, CPUE didn’t show obvious 

relationship with DMI as p = 0.119 and ΔAIC = 0.8 (Table 1). DMI exhibited positive influence 

on CPUE of yellowfin tuna when the value lower than zero and negative impact when higher 
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than 0.2 (Figure 3f). As for bigeye tuna, there was no apparent trend for the influence curve of 

DMI (Figure 3e).        

In the south Indian Ocean, DMI didn’t show significant influence both on bigeye tuna and 

yellowfin tuna. p-value equals 0.085 and ΔAIC equals 1.6 of bigeye tuna (Table 1). The 

influence plot of bigeye tuna showed a slight increase trend: negative DMI had negative 

influence and positive DMI had positive influence (Figure 3g). p values of yellowfin tuna in R2 

(p = 0.247) and R3 (p = 0.568) were both higher than 0.05. ΔAIC of yellowfin tuna in R2 (ΔAIC 

= 0.6) and R3 (ΔAIC = -1.1) were also lower than 2 (Table 1). Except extreme value of DMI, 

effect on yellowfin tuna in R2 didn’t exhibit obvious trend (Figure 3h). The influence plot in R3 

only showed a slight negative impact when DMI beyond 0.2 (Figure 3i). 

4. Discussion 

 IOD events could lead to changes of the habitat environment. When the negative IOD event 

occurs in the western Indian Ocean, the thermocline becomes shallow and productivity 

compressed to the sea surface. The depth of habitats become more superficial than usual and the 

vertical movement range become limited, thus improving the fishery catchability in this 

environment. In the positive IOD event in the western Indian Ocean, with the extension of 

habitat in the horizontal and vertical directions and the level of surface productivity decreases, 

the distribution of tuna tends to disperse, resulting in the decline of fishery catchability 

(Corbineau et al., 2008; Horii et al., 2018; Lan et al., 2012). Consequently, in R1, DMI have 

positive effects on bigeye tuna and yellowfin tuna when negative IOD events and negative 

impacts when positive IOD events (Figure 3c, d). As mentioned before, bigeye tuna lives in more 

lower temperature environment and deeper than yellowfin tuna. Therefore, IOD had more 

significant influence on yellowfin tuna than bigeye tuna. 

However, we found that only when IOD in the strong phases did it have obvious effects on 

catch rates. When the IOD was weak (DMI values around zero), there had little significant trend 

on the influence plots (e.g., Figure 3a,3b,3f). This can be explained by the research of Aditi et al.: 

IOD in strong years is driven by thermocline-SST coupling and is strongly interactive with the 

atmosphere, whereas the weak IOD events are mere response to surface winds without such 

dynamical coupling (Deshpande, Chowdary, & Gnanaseelan, 2014). What’s more, as the IOD 

only had influence in the equatorial area, it’s can be further proved that IOD events occurred 
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mainly in the tropical Indian Ocean (N. H. Saji, B. N. Goswami, P. N. Vinayachandran, & T. 

Yamagata, 1999). 

IOD events dramatically reduced the catch rates of the purse seine fleets in the western 

Indian Ocean (Marsac, 2008). Whereas it is likely that longline fleets are less directly affected by 

IOD events, because they can change the target species to offset the reduced catch rates for a 

given species. Moreover, the gear of longline is adjustable that the hooks can be set at various 

depths to exploit different tuna habitats (Marsac, 2017). Consequently, DMI only explained 

minor deviance in the gam models (Table 1). 
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FIGURE 1 Spatial and temporal distribution of nominal CPUE from 2000 to 2019 and regional stratification of bigeye tuna (a, c) and 

yellowfin tuna (b, d). BET: bigeye tuna; YFT: yellowfin tuna. 

 



IOTC–2021–WPTT23–## 
 

11 

 

FIGURE 2 Distribution of DMI from 2000 to 2019. Positive DMI is referred as positive IOD, 

negative DMI represent negative IOD phenomenon. 
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TABLE 1 Results derived from GAMs analyses of bigeye tuna and yellowfin tuna for the whole Indian Ocean, west Indian Ocean, 

east Indian Ocean and south Indian Ocean during 2000-2019: VIF, residual deviance, deviance explained, p-value of the explanatory 

variables and AIC values of each model. Base model designed as: Year + Month + s (longitude) + s (latitude). Significance levels of 

model terms: “.” = 0.05 < p < 0.1, “*” =0.01 < p <0.05, “**” =0.001< p < 0.01, “***” = p < 0.001. IO: Indian Ocean; WIO: western 

equatorial Indian Ocean; EIO: eastern equatorial Indian Ocean; SIO: south Indian Ocean. BET: bigeye tuna; YFT: yellowfin tuna. 

  
 

Model structure 

 

VIF Residual Deviance 
Cumulative of 

Deviance Explained % 
P-value AIC ΔAIC 

IO 

BET 
Base model  8564 31.6  36438.9  

+ s (DMI) 1.09 8556 31.7 0.028 * 36431.4 7.5 

YFT 
Base model  12714 32  43089.8  

+ s (DMI) 1.09 12688 32.1 < 0.001*** 43068.5 21.3 

WIO 

BET(R1) 
Base model  2783.1 24.2  13908.6  

+ s (DMI) 1.09 2775.7 24.4 0.0005*** 13893.2 15.4 

YFT(R1) 
Base model  3549.5 21.7  13415.4  

+ s (DMI) 1.07 3502.4 22.7 < 0.001*** 13357.6 57.8 

EIO 

BET(R2) 
Base model  966.0 29.5  5295.2  

+ s (DMI) 1.11 965.7 29.5 0.119 5294.4 0.8 

YFT(R4) 
Base model  1970.6 35.3  8646.7  

+ s (DMI) 1.08 1960.6 35.6 < 0.001*** 8632.3 14.4 

SIO 

BET(R3) 
Base model  4181.9 21.3  15065.8  

+ s (DMI) 1.07 4169.1 21.4 0.085 · 15064.2 1.6 

YFT(R2) 
Base model  3014.8 37.1  10002.6  

+ s (DMI) 1.09 3006.4 37.1 0.247 10002 0.6 

YFT(R3) 
Base model  2823.1 22.8  8871.4  

+ s (DMI) 1.06 2821.2 22.9 0.568 8872.5 -1.1 
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FIGURE 3 Effects of DMI on nominal catch per unit effort (CPUE) of bigeye tuna and 

yellowfin tuna during 2000-2019. Grey shade represented 95% confidence intervals. IO: Indian 

Ocean; WIO: west Indian Ocean; EIO: east Indian Ocean; SIO: south Indian Ocean. BET: bigeye 

tuna; YFT: y3ellowfin tuna. 
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Appendix 

FIGURE A1 Histograms and QQ-plots of residuals from the GAM analyses for bigeye tuna 

(BET) for the whole Indian Ocean and three sub-areas. 
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FIGURE A2 Histograms and QQ-plots of residuals from the GAM analyses for yellowfin tuna 

(YFT) for the whole Indian Ocean and four sub-areas. 
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